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About this Document

This document provides a comprehensive description of how to perform time series analysis using the
BigML Dashboard. Learn how to use the BigML Dashboard to configure, visualize, and interpret this
supervised model and use it to make forecasts.

This document assumes that you are familiar with:

• Sources with the BigML Dashboard. The BigML Team. June 2016. [5]

• Datasets with the BigML Dashboard. The BigML Team. June 2016. [4]

To learn how to use the BigML Dashboard to build other supervised predictive models read:

• Classification and Regression with the BigML Dashboard. [2]

To learn how to use the BigML Dashboard to build other unsupervised models read:

• Cluster Analysis with the BigML Dashboard. The BigML Team. June 2016. [3]

• Association Discovery with the BigML Dashboard. The BigML Team. June 2016. [1]

• Topic Modeling with the BigML Dashboard. The BigML Team. November 2016. [6]
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CHAPTER 1
Introduction

Time series is a sequentially indexed representation of your historical data that can be used to forecast
future values of numerical properties. It is used to analyze time-based data when historical patterns can
explain the future behavior such as sales forecasting, website traffic, production and inventory analysis
or weather forecasting among other use cases. A time series model needs to be trained with time series
data, i.e., a numeric field containing a time-ordered sequence of regularly spaced data points data
points in time.

BigML time series is an optimized implementation of the exponential smoothing1 methods. The
smoothing parameters assign exponentially increasing weights to more recent instances. In contrast
with other methods, past instances are not equally weighted, recent instances are given more weight
than older instances. Exponential smoothing methods also allow the modelization of data that contains
trend and seasonal patterns. Learn more about exponential smoothing methods in Chapter 2.

This document provides a comprehensive description of BigML time series, including how they can
be created with 1-click (Chapter 3), how to configure the different parameters (Chapter 4), and the
visualization in a time series chart provided by BigML (Chapter 5). Once your time series has been
created, you need to evaluate it to ensure that it makes accurate forecasts (Chapter 6). When you are
satisfied with your time series performance, you can use it to forecast (see Chapter 7). You can also
create, configure, retrieve, list, update, delete, evaluate and use your time series to make forecasts using
the BigML API and bindings (Section 8.1 and Section 8.2).

The TIME SERIES section within the “Supervised” tab of the main menu of the BigML Dashboard allows
you to list all your available time series models. The time series list view (Figure 1.1), shows the dataset
used to create each time series, the Name and the parameters configured to create the time series, the
objective fields (explained in Section 4.1), Age (time elapsed since it was created), Size, and number
of Evaluations and Forecasts that have been created using that time series. The SEARCH menu option
in the top right menu of the time series list view allows you to search your time series by name and by
configuration options.

1https://en.wikipedia.org/wiki/Exponential_smoothing

1
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2 Chapter 1. Introduction

Figure 1.1: Time series list view

When you first create an account at BigML or every time that you start a new project, your list of time
series will be empty. (See Figure 1.2.)

Figure 1.2: Time series empty list view in the BigML Dashboard

Finally, in Figure 1.3 you can see the icon used to represent a time series in BigML.

Figure 1.3: Time series icon

Copyright © 2024, BigML, Inc.



CHAPTER 2
Understanding Time Series

A time series model is a supervised learning method to forecast the future values of a numeric field
based on its previously observed values. A time series model needs to be trained with time series
data, i.e., a field containing a time-ordered sequence of regularly spaced data points. BigML time series
implement exponential smoothing methods to model data with different patterns, trends or seasonality.
See below an explanation about how BigML interprets time series data (Section 2.1), the exponential
smoothing methods that result in the different time series models (Section 2.2), and the metrics to
measure the models performance (Section 2.3).

2.1 Time Series Data

A time series field is a numeric field which is time-ordered and regularly spaced. Temperatures, sales,
production data, usage logs and website traffic, demographic and economic data (such as the number
of births, GDP growth, unemployment rates, etc.) are typically serialized data.

When you create a time series model, BigML assumes your dataset contains time series data, i.e., the
instances of the objective field are sequentially arranged in time and regularly spaced. This means
that BigML will take the first instance in your dataset as the first data point to train the time series model,
the second instance as the second data point and so on until the last instance in your dataset. It will
also assume equal time intervals between your instances.

Missing values in your dataset will be replaced using spline interpolation1 by default, but you can also
select to replace them by zero, the mean, median, maximum or minimum of your field (see Section 4.3).

2.2 Exponential Smoothing Methods

BigML implements exponential smoothing2 to train the time series models. Time series data is modeled
as a level component and it can optionally include a trend (damped or not damped) and a seasonality
component as explained below:

• The basic component of any forecast equation (Equation 2.1) is the level equation (Equation 2.2)
which can be defined as the weighted average of the objective field past values. α is the smoothing
parameter of the level component and it can take values between 0 and 1. If α is large, more weight
is given to most recent observations.

Forecast Equation ŷt+h = lt (2.1)
Level Equation lt = αyt + (1− α)lt−1 (2.2)

1https://en.wikipedia.org/wiki/Spline_interpolation
2https://en.wikipedia.org/wiki/Exponential_smoothing
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4 Chapter 2. Understanding Time Series

The level equation can be re-arranged as a function of the forecast error (ε). The error represents
the unpredictable variations in the time series data, and how they influence observed values. The
error can be additive (see Equation 2.3) or multiplicative (see Equation 2.4) in which case the
error will be relative to the level component. The error type mostly affects forecast intervals, and
multiplicative error is only suitable for strictly positive data.

Additive Error lt = αyt + (1− α)lt−1 = lt−1 + α(yt − lt−1) = lt−1 + αε (2.3)
Multiplicative Error lt = lt−1 + αlt−1ε = lt−1(1 + αε) (2.4)

• Data with a trend can be modeled by adding a trend equation (Equation 2.7) to the forecast
formula (Equation 2.5), where bt is the trend or slope of the time series at time t. β is the smoothing
parameter for the trend and it can take values between 0 and 1. The trend component has two
variations: additive or multiplicative. The additive variation is commonly known as Holt’s linear
method3 (see Equation 2.5) because the trend growth is assumed to be linear, i.e. the trend slope
is constant.

Forecast Equation ŷt+h = lt + hbt (2.5)
Level Equation lt = αyt + (1− α)(lt−1 + bt−1) (2.6)
Trend Equation bt = β(lt − lt−1) + (1− β)bt−1 (2.7)

The forecast equation with multiplicative trend is known as exponential trend method (see Equa-
tion 2.8) because the trend growth is exponential, i.e., it contains is a constant growth rate that is
multiplied by the level component.

Forecast Equation ŷt+h = ltb
h
t (2.8)

Level Equation lt = αyt + (1− α)(lt−1 + bt−1) (2.9)

Trend Equation bt = β
lt
lt−1

+ (1− β)bt−1 (2.10)

• Trend models assume the trend will be repeated in the future indefinitely, but this does not usually
happen in the real world. In cases in which you need to forecast a long time horizon ahead,
a damped parameter can be included to “dampen” the trend to a flat line at some point in the
future. The damping parameter is represented by a φ coefficient in the forecast formula (see
Equation 2.11).

Forecast Equation ŷt+h = lt + (φ+ φ2 + ...+ φh)bt (2.11)
Level Equation lt = αyt + (1− α)(lt−1 + φbt−1) (2.12)
Trend Equation bt = β(lt − lt−1) + (1− β)φbt−1 (2.13)

The damped parameter can also be included when the trend is multiplicative resulting in a multi-
plicative damped trend method (see Equation 2.14). This method will generate more aggressive
forecasts than the additive method but it will also produce a constant line in the long-term.

Forecast Equation ŷt+h = ltb
(φ+φ2+...+φh)
t (2.14)

Level Equation lt = αyt + (1− α)(lt−1 + bφt−1) (2.15)

Trend Equation bt = β
lt
lt−1

+ (1− β)bφt−1 (2.16)

3https://en.wikipedia.org/wiki/Exponential_smoothing#Basic_exponential_smoothing

Copyright © 2024, BigML, Inc.
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Chapter 2. Understanding Time Series 5

• Finally, to model seasonal data4, i.e., data with fixed and regular periods or fluctuations, a sea-
sonality component can be included in the forecast equation. The smoothing parameter of the
seasonal component is γ and it takes values between 0 and 1. BigML will try to automatically learn
the seasonality patterns in your data or you can manually configure the period length (m), i.e., the
number of data points per period (see Subsection 4.5.3). The seasonal component can be addi-
tive or multiplicative. The Equation 2.21 shows the forecast equation with additive seasonality:

Forecast Equation ŷt+h = lt + hbt + st−m+h+
m

(2.17)

Level Equation lt = αyt + (1− α)(lt−1 + bt−1) (2.18)
Trend Equation bt = β(lt − lt−1) + (1− β)bt−1 (2.19)
Seasonal Equation st = γ(yt − lt−1 − bt−1) + (1− γ)st−m (2.20)

The multiplicative method shown in Equation 2.21 makes the seasonal variations proportional to
the level of the series:

Forecast Equation ŷt+h = (lt + hbt)st−m+h+
m

(2.21)

Level Equation lt = α
yt

st−m
+ (1− α)(lt−1 + bt−1) (2.22)

Trend Equation bt = β(lt − lt−1) + (1− β)bt−1 (2.23)

Seasonal Equation st = γ
yt

(lt−1 + bt−1)
+ (1− γ)st−m (2.24)

The error, the trend (damped and not damped) and the seasonality components along with their vari-
ations (multiplicative or additive) can be combined producing thirty different forecast equations. Each
one of the different combinations is called a model in the BigML Dashboard (“ets_model” in the API) and
you can see them all in your time series view (Chapter 5). However, not all combinations are explored
due to numeric stability reasons. The following combinations are excluded:

• Additive errors with multiplicative trends or seasonalities.

• Multiplicative trends with additive seasonality.

• Multiplicative seasonality if your objective field contains zeros or negative values.

Usually, if your data does not contain seasonality, you will get eight different models. If your data contains
seasonality components you will get up to nineteen different models.

Each model has a unique name associated based on its components variations following the schema
[Error, Trend, Seasonality]. Each component can be represented by an “A” indicating the component is
additive, an “M” multiplicative and an “N” indicating the component has not been included. Additionally,
the trend component can be represented by an “Ad” or “Md” indicating damped trends. Thus, a model
with the name [M,Ad,N] indicates the model has multiplicative errors, damped additive trend, and no
seasonality.

If you want to learn more about the technicalities and actual formulas for each combination please visit
this page5.

Each model learned from the data to fit the objective field has a set of performance metrics associated
so you can select the best one. See an explanation of these metrics in the following section (Section 2.3).

2.3 Model Perfomance Metrics

For each model result of the multiple possible combinations of the components explained in Section 2.2,
BigML provides a set of metrics so you can select the best performing model.

4https://en.wikipedia.org/wiki/Seasonality
5https://www.otexts.org/fpp/7/1

Copyright © 2024, BigML, Inc.
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6 Chapter 2. Understanding Time Series

Note: the performance metrics explained in this section are different from the metrics provided
during the time series evaluation (see Chapter 6). The only common metric with evaluations is
the R square.

BigML provides four different metrics to measure your models’ performance:

• AIC6: the Akaike Information Criterion measures the trade-off between the goodness-of-fit and
the model’s complexity. More complex models tend to better fit the training data but they gener-
alize worse with data that the model has not seen before, resulting in less accurate predictions.
This problem is known as overfitting and it is a common problem shared by all supervised learning
methods. The AIC tries to minimize the errors in the training data as well as the risk of overfit-
ting. AIC measures the errors made by the model by aggregating the differences between the
model values and the original data. The model complexity is a function of the number of the model
parameters. The smaller the AIC, the better.

• AICc: the Corrected Akaike Information Criterion7 introduces a correction element for smaller
datasets. When the number of instances is relatively small the AIC overvalues models that overfit
the training data, therefore, the AICc is a better metric in this case. For bigger datasets, the AIC
and AICc tend to yield similar results.

• BIC8: the Schwarz Bayesian Information Criterion is similar to the AIC, but it penalizes more heavily
model complexity. The lower the BIC, the better.

• R squared9: the R squared measures the model’s errors compared to the objective field actual
values. The R squared can be interpreted as the model’s goodness-of-fit to the training data. It can
take values up to 1. The higher the R squared, the better. A downside of the R squared compared
to the previously defined metrics is that it does not measure the model’s complexity. This means
that the AIC is usually a more accurate measure to evaluate the model’s performance. Please
refer to this article10 to get an illustration on the technical reasons for this.

To learn more about the performance metrics for models please visit this page11.

6https://en.wikipedia.org/wiki/Akaike_information_criterion
7https://en.wikipedia.org/wiki/Akaike_information_criterion#AICc
8https://en.wikipedia.org/wiki/Bayesian_information_criterion
9https://en.wikipedia.org/wiki/Coefficient_of_determination

10http://www.statisticalengineering.com/r-squared.htm
11https://www.otexts.org/fpp/5/3
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CHAPTER 3
Creating Time Series with 1-Click

To create time series in BigML you have two options: you can use the 1-click option which uses the
default values for all available configuration options or you can tune the parameters in advance using
the configuration option explained in Chapter 4.

You can find the 1-CLICK TIME SERIES option in the 1-click action menu from the dataset view. (See
Figure 3.1.)

Figure 3.1: Create time series from 1-click action menu

Alternatively, you can use the 1-CLICK TIME SERIES option in the pop up menu from the dataset list
view. (See Figure 3.2.)

7



8 Chapter 3. Creating Time Series with 1-Click

Figure 3.2: Create time series from pop up menu

Either option builds a time series model using the default values for the available configuration parame-
ters explained in the following section. (See Chapter 4.)

Copyright © 2024, BigML, Inc.



CHAPTER 4
Time Series Configuration Options

You can configure a number of parameters that affect the way BigML creates time series. See the
following sections for a detailed explanation.

To display the configuration panel, click the CONFIGURE TIME SERIES menu option in the configuration
menu from the dataset view. (See Figure 4.1.)

Figure 4.1: Configure time series

4.1 Objective Fields

The objective fields are the fields you want to predict. Time series only support numeric fields as
objective fields.

You can select one or more objective fields to create your time series by including them in the search
box shown in Figure 4.2. BigML takes the last numeric non-date field in your dataset as the objec-
tive field by default. You can include all numeric fields in your dataset by clicking the option shown in
Figure 4.2.

9



10 Chapter 4. Time Series Configuration Options

Figure 4.2: Configure time series objective fields

BigML treats each objective field independently, i.e., a set of time series models will be trained for each
selected field separately.

4.2 Dates

BigML allows you to set the dates of your data so you can visualize them in the x-axis of the time series
chart (see Chapter 5).

If your data contains a date-time field, it will be automatically selected to be included in the chart (see
Figure 4.3).

Figure 4.3: Select a date-time field for the chart

Alternatively, you can manually configure the dates of your data to be shown in the chart. You need to
input the date associated with the first instance and the time interval between successive instances (or
rows). Sequential values based on the interval will be assigned to each of the instances. The final date
will be automatically calculated according to the start date, the date interval and the number of instances
in your dataset. See how to configure the dates for your instances in Figure 4.4.

Copyright © 2024, BigML, Inc.



Chapter 4. Time Series Configuration Options 11

Figure 4.4: Set the dates of your time series

When you create the time series, you will be able to see the dates associated with each instance in
the x-axis of the time series chart. If your dataset does not contain any date-time field or you do not
configure the dates, the index value associated to each instance will be just the instance positition in
the dataset starting at zero for the first instance.

4.3 Default Numeric Value

In the case your objective fields include missing values, BigML automatically replaces them by spline
interpolation1. You can also select to replace them by the field’s Mean, Median, Maximum, Minimum
or by Zero. (See Figure 4.5.)

Figure 4.5: Select a default numeric value to replace missing numeric values

1https://en.wikipedia.org/wiki/Spline_interpolation

Copyright © 2024, BigML, Inc.
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12 Chapter 4. Time Series Configuration Options

4.4 Forecast Horizon

BigML automatically computes a forecast along with your time series creation. By doing this, you will be
able to see your model forecast along with your model view (see Chapter 5). By default, BigML computes
the forecast for a horizon of 50 future data points but you can use the slider shown in Figure 4.6 to
forecast up to 400 data points.

Figure 4.6: Set the horizon for your forecast

4.5 Model Components

By combining the different components (the error, the trend and the seasonality) and their variations
(multiplicative, additive, damped and not damped) BigML explores multiple versions of the forecast for-
mula so you can choose the model that better fits your training data and make most accurate predictions.
These combinations are explained in Section 2.2.

Although BigML explores all combinations by default, you can also exclude certain components or varia-
tions from your time series models by using the configuration options shown in Figure 4.7 and explained
in the subsections below.

Copyright © 2024, BigML, Inc.



Chapter 4. Time Series Configuration Options 13

Figure 4.7: Configure the model components to create your time series

4.5.1 Error
The error represents the unpredictable variations in the time series data, and how they influence ob-
served values. It can be additive or multiplicative (see the formulas in Section 2.2). The error type
mostly affects forecast intervals (see Section 7.3), and multiplicative error is only suitable for strictly
positive data. By default, BigML explores all error variations.

4.5.2 Trend and Damping Parameters
Your time series data may have an increasing trend (positive slope), a decreasing trend (negative slope)
or no trend (horizontal line). When the data has a trend it is important to include a trend component.
The trend component can be additive, when the growth is linear, or multiplicative, when the growth is
exponential. The trend can also be damped, in which case the growth will be constant at some point in
the future, or not damped, if the trend keeps growing indefinitely. For long-term forecasts, the damped
trend seems a more realistic approach. By default BigML explores all the options mentioned.

You can find a more detailed explanation of the differences for all the trend variations in Section 2.2.

4.5.3 Seasonality and Period Length
The data contains seasonality when it presents regular fluctuations over time. Seasonal data needs
to be modeled with the seasonality component. The seasonality component can be included in your
models by setting a period length higher than 1. The period length is the number of data points per
seasonal period in your data, and it needs to be set taking into account your instances interval and the
seasonal frequency. For example, if you have monthly data and annual seasonality, the period should
be 12; if you have daily data and a weekly seasonality, the period should be 7. BigML tries to learn the
period length in your data by default, but you can also manually configure it by using the slider shown in
Figure 4.7.
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4.6 Sampling

You can specify a subset of instances to create the time series. The range option allows you specify the
instances you want to use to train your model, e.g., from instance 1 until 200. This option is very useful
when you want to train and test your model with different subsets of data and you did not use the linear
train and test split explained in Section 6.1.

Figure 4.8: Set a range for your time series

4.7 Creating Time Series with Configured Options

After finishing the configuration of your options, you can change the default time series name in the
editable text box. Then you can click on the Create time series button to create the new time series, or
reset the configuration by clicking on the Reset button.
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Figure 4.9: Create time series after configuration

4.8 API Request Preview

The API Request Preview button is in the middle on the bottom of the configuration panel, next to

the Reset button (See (Figure 4.9)). This is to show how to create the time series programmatically:
the endpoint of the REST API call and the JSON that specifies the arguments configured in the panel.
Please see (Figure 4.10) below:

Figure 4.10: Time series API request preview

There are options on the upper right to either export the JSON or copy it to clipboard. On the bottom
there is a link to the API documentation for time series, in case you need to check any of the possible
values or want to extend your knowledge in the use of the API to automate your workflows.

Please note: when a default value for an argument is used in the chosen configuration, the argument
won’t appear in the generated JSON. Because during API calls, default values are used when arguments
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are missing, there is no need to send them in the creation request.
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CHAPTER 5
Visualizing Time Series

BigML time series view shows a chart where you can see the objective field data and the best model
according to the AIC metric by default. Below the chart, you can find the selected metric values (the
AIC in the image below) and the model components: the trend, the error, and the seasonality. In the
Figure 5.1 below the best model has multiplicative errors, trend and seasonality (see Section 4.5 for a
detailed explanation of the model components).

Figure 5.1: Time series view

The AIC is the default metric, but BigML offers three additional performance metrics for you to select the
best model:

• AIC (Akaike Information Criterion): it measures the trade-off between the model goodness-of-fit
and the model complexity to avoid overfitting. The lower the AIC, the better.

• AICc (Corrected Akaike Information Criterion): it measures the same as AIC metric does, but it is
a more accurate metric to avoid overfitting for small datasets. For larger datasets it yields same
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results as the AIC.

• BIC (Schwarz Bayesian Information Criterion): it measures the same trade-off as the AIC between
the model goodness-of-fit and its complexity, but it penalizes more heavily the risk of overfitting.
The lower the BIC, the better.

• R squared: it measures the model goodness-of-fit compared to a mean-based model. The higher
the R squared, the better.

Learn about the performance metrics in Section 2.3.

Figure 5.2: Select the best model by any of the available metrics

In the chart, the y-axis represents the objective field values and the x-axis the time horizon. If you
configured more than one objective field (see Section 4.1), you will be able to see them using the selector
shown in Figure 5.3. If you included the dates before creating your model (see Section 4.2) you will be
able to see them in the x-axis, otherwise, you will see the instances index starting at zero.
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Figure 5.3: Select the objective field to visualize in the time series chart

By hovering over the chart area you will be able to see the axis values in the legend to the right. (See
Figure 5.4). You can freeze this view by pressing “Shift”, and release it by pressing “Esc”. You can also
export the chart in PNG format with or without legends.
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Figure 5.4: See the chart values in the legend

If you display the panel below the chart, you will be able to see all the models learned from your training
data. These models represent the different combinations of the forecast components (error, trend,
seasonality) and their variations (multiplicative, additive, damped, not damped). The models you select
in the table will be plotted in the chart. Each model contains the following information:

• Name: each model has a name that represents the variations of its main components ”Error,
Trend, Seasonality”. A name like ”A,Md,A” represents an additive error, multiplicative damped
trend, and an additive seasonality model.

• Model Details: the model details include the description of the components explained before and
its standard name in the literature. For example, a model named “A,A,N” (additive errors, additive
trend, and no seasonality) is commonly known as Holt’s linear method.

Learn about the different model components in Section 2.2 and Section 4.5.
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Figure 5.5: See all the models learned from the training data

5.1 Time Series Decomposition

You can decompose your models to display each of the time series components plotted in a separate
chart: the level (or error), the trend and the seasonality (see Section 4.5).

You need to select a model and click on the option on top of the chart shown in Figure 5.6. If you select
more than one model at the same time this option will be disabled.
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Figure 5.6: Show decomposed model

See the three components (level, trend, and seasonality) plotted in different charts (see Figure 5.7).
Close this view by clicking again on the same icon that you used to display it.
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Figure 5.7: Visualize the model components separately

Copyright © 2024, BigML, Inc.



CHAPTER 6
Time Series Evaluations

6.1 Introduction

Time series evaluations provide an easy way to measure the performance of time series models. The
main purpose of evluating your time series is twofold:

• First, obtaining an estimation of the model’s performance in production (i.e., making predictions for
new instances the model has never seen before).

• Second, providing a framework to compare models to help identify the ones with best predictive
performance.

The basic idea behind evaluations is to take some test data different from the one used to train your
model and create a forecast for every instance and every model. Then compare the actual objective
field values of the instances in the test data against the forecasts and compute several performance
measures based on the correct results as well as the errors made by the model.

The usual way to obtain some test data is to split a dataset into two subsets: a training set and a test
set. For time series this split needs to be linear instead of random because your instances need to be
sequentially distributed over time to train the models. You can easily do this from your BigML Dashboard
by using the 1-click menu option that automatically takes the first 80% of the instances for training
and the most recent 20% for testing (see Figure 6.1).

Figure 6.1: 1-click linear train and test split

Alternatively, you can also configure those percentages as shown in Figure 6.2. Please keep in mind
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that you need to click the linear split option if you are creating a time series so your dataset is not
randomly split.

Figure 6.2: Configure the linear train and test split

After creating the time series evaluation (see Section 6.2), you will be able to graphically see the
goodness-of-fit for your training data and the different performance measures to help you select the
best performing model (see Section 6.4). BigML evaluations are first-class citizens. This means that
they can be created via the BigML API and can also be queried automatically (see Subsection 6.5.1 for
an example).

The evaluations section in the BigML Dashboard can be found in the third tab under the model menu (see
Figure 6.3.) This section contains all your model’s evaluations ordered by creation date so most recent
evaluations are found at the top of the list. Order your evaluations by Name, by Type (classification or
regression and cross-validation icons below), by Performance, by Age (time since the evaluation was
created), Dataset Size (the testing dataset weight) and Instances (number of instances in the testing
dataset). The icons on the left of the evaluations names in the evaluation list view allow you to go to
the original resources used to create the evaluation (in this case the time series). In the evaluation list
view, you can search evaluations by name by clicking the SEARCH menu option in the top right corner.
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Figure 6.3: Evaluations section in the BigML Dashboard

Finally, you can see the corresponding icons used to represent a single time series evaluation in Fig-
ure 6.4.

Figure 6.4: Time series evaluations icon

6.2 Creating Time Series Evaluations

To create a time series evaluation, you need two resources: a time series and a testing dataset. You
can use the EVALUATE option in the 1-click action menu from the time series view (see Figure 6.5).
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Figure 6.5: Evaluate time series from 1-click action menu

Alternatively, you can use the EVALUATE option in the pop up menu from the time series list view (see
Figure 6.6).

Figure 6.6: Evaluate time series from pop up menu

By using any of these options, you will be redirected to the New Evaluation view where the time series
will be pre-filled in the selector and you only have to choose the testing dataset. If you previously split
your original dataset into two subsets, one for training and another for testing (see Section 6.1), BigML
will automatically select the corresponding testing dataset. Finally, click the Evaluate green button to
perform the evaluation. (See Figure 6.7.)
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Figure 6.7: Evaluate time series using a testing dataset

6.3 Configuring Time Series Evaluations

BigML allows you to configure the field mapping and the dataset range for time series evaluations.

6.3.1 Fields Mapping
You can specify which fields in the time series model match with the fields in the testing dataset. BigML
automatically matches fields by name, but you can also set an automatic match by field ID when clicking
on the green switcher shown in Figure 6.8. You can also manually search for fields or remove them from
the Dataset fields column if you do not want them to be considered during the evaluation.

Copyright © 2024, BigML, Inc.



Chapter 6. Time Series Evaluations 29

Figure 6.8: Fields Mapping for evaluations

Note: the fields mapping option has a limit of 200 fields from the BigML Dashboard. If you need
to map your fields for evaluations with more than 200 fields, please use the BigML API1.

6.3.2 Range
Sometimes you do not need all the data contained in your testing dataset to generate your evaluations.
If you have a very large dataset, sampling may be a good way of getting faster results. BigML allows you
to take a linear sample before creating an evaluation so you do not need to create a different dataset.
By using the range you can specify a linear subset of instances from which to sample, e.g., choosing
from instance 1 to 30.

1https://bigml.com/api/evaluations#ev_evaluation_arguments
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Figure 6.9: Configure the range for evaluations

6.4 Visualizing Time Series Evaluations

Time series visualizations are composed of two main parts: a chart to graphically inspect the good-
ness of fit of the selected models, and a table which contains all the models learned along with their
evaluation metrics.

6.4.1 Evaluation Chart
The evaluation chart shows the model view and the selected model forecasts for the testing data
(see Figure 6.10). This chart allows you to visually analyze the goodness-of-fit of your models over
the testing data. By default, BigML selects the model with the best R squared metric, but you can select
the best model by other metrics such as the MAE, MSE, sMAPE, or MASE explained in the subsections
below. You can see the MAE, MSE and R squared metrics of the selected model below the chart (see
Figure 6.10).
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Figure 6.10: Time series evaluations

The forecast data points for the test data are plotted along with a confidence interval which is rep-
resented by a color area with less opacity in the chart. This is the error interval in which the forecast
can lay with a confidence of 95%. You can hide or show these intervals by clicking in the option shown
in Figure 6.11. Longer forecast horizons will usually generate wider error intervals, since time series
diminish their prediction quality as the horizon is larger.
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Figure 6.11: Time series evaluation intervals

BigML also provides three benchmark models that work as a baseline, so you can compare your model
forecasts against them:

• A mean-based model that always predicts the mean for all instances in your training dataset.

• A naive model that always predicts the last observed value in the dataset.

• A drift model that takes the first and last observation and extrapolates the future values.
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Figure 6.12: Benchmark models for time series

Learn more about these benchmarking methods here2.

Below the chart, you will find a panel which contains a table with the rest of your models learned from
the training data. These models differ from one another because they have different components and
variations as explained in Chapter 2. You can visualize them in the chart by selecting them in the table.

2https://www.otexts.org/fpp/2/3
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Figure 6.13: Select models to analyze their performance

6.4.2 Evaluation Metrics
Time series evaluations contain a set of performance metrics per model to help you identify the best
performing model. See an explanation for each of them in the subsections below.

Mean Absolute Error

The Mean Absolute Error (MAE)3 is the mean of the model forecast errors for each instance. It is
computed as the average of the absolute values of the differences between the target variable predicted

3https://en.wikipedia.org/wiki/Mean_absolute_error
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by the model (ŷ) vs. the actual values (y). The lower the MAE, the better. Letting T be the period length
of the time series in the test dataset, i.e., the total number of instances evaluated, then:

MAE =

∑
t |ŷt − yt|
T

Mean Square Error

The Mean Square Error (MSE)4 is similar to the Mean Absolute Error, but the differences between pre-
dictions and actual values are squared. It is computed as the average of the squares of the differences
between the target variable predicted by the model (ŷ) vs. the actual values (y). Letting T be the period
length of the time series in the test dataset, i.e., the total number of instances evaluated, then:

MSE =

∑
t(ŷt − yt)2

T

R Squared

The R2, also called the coefficient of determination5, measures how much better the model is than
always predicting the mean value of the target variable (ȳ) in the test set. It can produce values values
up to 1. Values below 0 indicate the model is worse than predicting the mean; a value of 0 means the
model is not any better than predicting the mean; and 1 means the model perfectly fits the data. Higher
values for R2 usually mean better performance.

R2 = 1−
∑
t(ŷt − yt)2∑
t(yn − ȳt)2

Symmetric Mean Absolute Percentage Error

Percentage errors calculate the error as a percentage of the objective field actual values:

pt = 100
ŷt − yt
yt

= 100
et
yt

The main advantage of percentage errors is the scale independence, which makes the errors compara-
ble for different objective fields. However, if yt is zero for any t in the time series, the percentage error will
be undefined. This problem is corrected by the Symmetric Mean Absolute Percentage Error (sMAPE)6:

sMAPE =

∑
t 200 |ŷt−yt|(ŷn+yt)

T

However, the sMAPE can also be undefined in the case (ŷt + yt) is closer to zero. Moreover, (ŷt + yt)
can be negative depending on the objective field values. The scaled errors explained in the following
subsection correct this problems.

Mean Absolute Scaled Error

The Mean Absolute Scaled Error (MASE)7 correct the problems of the sMAPE explained in the previous
section when (ŷt + yt) is closer to zero or negative. The scaled error divides the error by the naive
forecast error (remember the naive forecast always forecasts the previous value in the time series):

MASE =

∑
t

|ŷt−yt|
1

T−1

∑T
t=2|yt−yt−1|

T

4https://en.wikipedia.org/wiki/Mean_squared_error
5https://en.wikipedia.org/wiki/Coefficient_of_determination
6https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error
7https://en.wikipedia.org/wiki/Mean_absolute_scaled_error
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Mean Directional Accuracy

The Mean Directional Accuracy (MDA)8, compares the forecast direction (upward or downward) to the
actual data direction. MDA provides the probability that the model can detect the correct direction of the
time series. A value of 1 indicates a perfect fit between the time series direction and the model forecast
direction.

To learn more about the time series performance metrics please visit this page9.

6.5 Consuming Time Series Evaluations

BigML allows you to create and consume your evaluations programmatically via the BigML API and
bindings. The following subsections explain both tools.

6.5.1 Using Time Series Evaluations Via the BigML API
You can perform all the evaluation actions explained in this document via the BigML API such as creating,
configuring, retrieving, listing, updating, and deleting evaluations.

See below how to create an evaluation just using a model and a testing dataset once you have properly
set the BIGML_AUTH environment variable to contain your authentication credentials:

curl "https://bigml.io/evaluation?$BIGML_AUTH" \

-X POST \

-H 'content-type: application/json' \

-d '{"dataset": "dataset/50650bdf3c19201b64000020",

"timeseries": "timeseries/50650bea3c19201b64000024"}'

6.5.2 Using Time Series Evaluations Via the BigML Bindings
You can create and use evaluations via BigML bindings which are libraries aimed to make it easier to
use the BigML API from your language of choice. BigML offers bindings for several languages including
Python, Node.js, Java, Swift or Objective-C. See below an example to create an evaluation with the
BigML Python bindings.

from bigml.api import BigML

api = BigML()

evaluation = api.create_evaluation('timeseries/57506c472275c1666b004b10',

'dataset/576d213d983efc63e8000038')

For more information on BigML bindings, please refer to the bindings page10.

6.6 Deleting Time Series Evaluations

You can delete your evaluations by clicking on the DELETE EVALUATION option from the 1-click action
menu from the evaluation view (Figure 6.14).

8https://en.wikipedia.org/wiki/Mean_Directional_Accuracy_(MDA)
9https://www.otexts.org/fpp/2/5

10https://bigml.com/tools/bindings

Copyright © 2024, BigML, Inc.

https://en.wikipedia.org/wiki/Mean_Directional_Accuracy_(MDA)
https://www.otexts.org/fpp/2/5
https://bigml.com/tools/bindings
https://en.wikipedia.org/wiki/Mean_Directional_Accuracy_(MDA)
https://www.otexts.org/fpp/2/5
https://bigml.com/tools/bindings


Chapter 6. Time Series Evaluations 37

Figure 6.14: Delete evaluation from the 1-click action menu

Alternatively, you can click the DELETE EVALUATION option in the pop up menu on the evaluation list
view (Figure 6.15).

Figure 6.15: Delete evaluation from pop up menu

A modal window will be displayed asking you for confirmation. Once an evaluation is deleted, it is
permanently deleted, and there is no way you (or even the IT folks at BigML) can retrieve it.
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Figure 6.16: Delete evaluation confirmation
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CHAPTER 7
Time Series Forecasts

7.1 Introduction

The ultimate goal of building a BigML time series is being able to make predictions for the future. In
BigML, time series predictions are called forecasts. The forecasts for time series are created during the
time series creation.

7.2 Creating and Configuring Forecasts

BigML automatically creates a forecast of 50 data points during your time series creation. You can
increase the forecasted horizon up to 400 future data points by configuring the option explained in
Section 4.4. When your time series is created, you are able to see the forecast for any of the selected
models in the chart by using the slider shown in Section 7.3.

7.3 Visualizing Forecasts

When your time series is created, you can use the Forecast horizon slider to see the model predic-
tions. As you increase the horizon, the forecasted data points will appear in the chart. Each forecast is
generated with a confidence interval that sets the maximum and minimum values that the forecast can
take with a 95% of confidence. They are obtained by simulating 5,000 predictions paths with noise and
computing the sample quantiles. Usually intervals grow as the forecast period increases since there is
more uncertainty when the predicted time horizon is longer. You can hide or show these intervals by
using the option shown in Figure 7.1.
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Figure 7.1: Forecast chart

If you configured dates for your time series (see Section 4.2), BigML will automatically compute the
corresponding future dates according to the time horizon length and they will be plotted in the x-axis.

When you make forecasts, BigML offers the possibility of showing three benchmark models that work as
a baseline for the other models:

• A mean-based model that always predicts the mean for all instances in your training dataset.

• A naive model that always predicts the last observed value in the dataset.

• A drift model that takes the first and last observation and extrapolates the future values.
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Figure 7.2: Benchmark models for time series

Learn more about these benchmarking methods here1.

7.4 Consuming Forecasts

BigML provides several ways for developers to integrate BigML time series forecasts within their predic-
tive applications. In the following sections, we will describe how you can use the BigML REST API and
the BigML Python bindings to work with time series forecasts.

7.4.1 Using Forecasts Via the BigML API
Time series forecasts have full citizenship in the BigML API. This means you can programmatically
create, update, list, delete, and use them for predictions. For example, this is how you can create a
forecast using the command line from a given time series and a given time horizon. This will require
properly setting the BIGML_AUTH environment variable to contain your authentication credentials:

curl "https://bigml.io/forecast?$BIGML_AUTH" \

-X POST \

-H 'content-type: application/json' \

-d '{"timeseries": "timeseries/50650bdf3c19201b64000020",

"horizon": 24}'

For more information on using model predictions through the BigML API, please refer to the forecast
REST API documentation2.

1https://www.otexts.org/fpp/2/3
2https://bigml.com/api/forecast
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7.4.2 Using Forecasts Via the BigML Bindings
BigML bindings provide a convenient way to access the BigML REST API from your language of choice.
They offer a higher-level view of BigML Machine Learning resources and algorithms in a number of
languages, including Python, Node.js, Java, Swift, and Objective-C. See below an example to create a
forecast in Python using BigML bindings where “00005” is the ID of the objective field and the “horizon”
is the number of data points to forecast:

from bigml.api import BigML

api = BigML()

source = api.create_source("my_ts_data.csv")

api.ok(source)

dataset = api.create_dataset(source)

api.ok(dataset)

time_series = api.create_time_series(dataset)

api.ok(time_series)

input_data = {"000005": {"horizon": 10}}

forecast = api.create_forecast(time_series, {"000005": {"horizon": 10}})

BigML bindings also provide the means to carry through forecasts locally, without ever hitting the net-
work, which can greatly improve the latency of forecasting from your apps. This is made possible by
BigML time series being white-box, meaning you can download them and use them independently from
BigML. For example, the following code snippet shows how to download a time series and use it for
making a local forecast with the BigML bindings for Python:

from bigml.timeseries import TimeSeries

local_time_series = TimeSeries("timeseries/5968ec46983efc21b000001b")

local_time_series.forecast({"000005": {"horizon": 10}})

For more information on using forecasts through the BigML bindings, please refer to the BigML bindings
documentation.

7.5 Deleting Forecasts

You can DELETE your time series forecast by deleting your model. See Chapter 14 for an explanation.
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CHAPTER 8
Consuming Time Series

Similarly, you can also create and consume your time series programmatically via the BigML API and
bindings. The following subsections explain those options.

8.1 Using Time Series Via the BigML API

Time series have full citizenship in the BigML API which allows you to programmatically create, configure,
retrieve, list, update, delete, and use them to make forecasts.

See in the example below how to create a time series using an existing dataset after you have properly
set the BIGML_AUTH environment variable to contain your authentication credentials:

curl "https://bigml.io/timeseries?$BIGML_AUTH" \

-X POST \

-H 'content-type: application/json' \

-d '{"dataset": "dataset/50650bdf3c19201b64000322"}'

For more information on using time series through the BigML API, please refer to the time series REST
API documentation1.

8.2 Using Time Series Via the BigML Bindings

You can also create and use time series via BigML bindings which are libraries aimed to make it
easier to use the BigML API from your language of choice. BigML offers bindings in multiple languages
including Python, Node.js, Java, Swift, and Objective-C. See below an example to create a time series
with the BigML Python bindings.

from bigml.api import BigML

api = BigML()

timeseries = api.create_timeseries('dataset/57506c472275c1666b004b10')

For more information on BigML bindings, please refer to the dedicated bindings page2.

1https://bigml.com/api/timeseries
2https://bigml.com/tools/bindings
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CHAPTER 9
Time Series Limits

BigML time series have a few limitations regarding some of the configurable parameters to create models
and forecasts. See the corresponding limits listed below:

• Period length: a maximum of 60 data points per period for seasonal data is allowed due to
computational costs reasons.

• Forecast horizon: a maximum of 400 data points per forecast is allowed. It does not make sense
to forecast longer horizons for time series since the forecasts rapidly decrease their quality as the
horizon increases.
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CHAPTER 10
Time Series Descriptive Information

Time series models have an associated name, description, category, and tags. The following sub-
sections briefly describe each concept. See in Figure 10.1 the options under MORE INFO menu to edit
time series.

Figure 10.1: Editing time series

10.1 Time Series Name

Each time series model has a name that is displayed in the time series list view and also on the top bar
of the time series view. Time series names are indexed to be used in searches. When you create a
time series, it gets a default name (the dataset name). You can change it using the MORE INFO menu
option on the right corner of the time series view. The name of a time series cannot be longer than 256
characters. More than one time series can have the same name even within the same project, but they
will always have different identifiers.

10.2 Description

Each time series model also has a description that is very useful for documenting your Machine Learn-
ing projects. Time series take the description of the datasets used to create them by default.
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Descriptions can be written using plain text and also markdown1. BigML provides a simple markdown
editor that accepts a subset of markdown syntax. (See Figure 10.2.)

Figure 10.2: Markdown editor for time series descriptions

Descriptions cannot be longer than 8192 characters and can use almost any character.

10.3 Category

A category, taken from the dataset used to create it, is associated with each time series. Categories
are useful to classify time series according to the domain which your data comes from. This is useful
when you use BigML to solve problems across industries or multiple customers.

A time series category must be one of the 24 categories listed in Table 10.1.

1https://en.wikipedia.org/wiki/Markdown
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Table 10.1: Categories used to classify time series by BigML

Category

Aerospace and Defense

Automotive, Engineering and Manufacturing

Banking and Finance

Chemical and Pharmaceutical

Consumer and Retail

Demographics and Surveys

Energy, Oil and Gas

Fraud and Crime

Healthcare

Higher Education and Scientific Research

Human Resources and Psychology

Insurance

Law and Order

Media, Marketing and Advertising

Miscellaneous

Physical, Earth and Life Sciences

Professional Services

Public Sector and Nonprofit

Sports and Games

Technology and Communications

Transportation and Logistics

Travel and Leisure

Uncategorized

Utilities

10.4 Tags

A time series model can also have a number of tags associated with it that can help to retrieve it via the
BigML API or to provide time series with some extra information. Time series models inherit the tags
from the dataset used to create them. Each tag is limited to a maximum of 128 characters. Each time
series can have up to 32 different tags.

10.5 Counters

For each time series, BigML also stores a number of counters to track the number of other resources that
have been created using the time series as a starting point. Display the counters by mousing over the
menu option at the top of the time series view. Click on VIEW # EVALUATIONS FROM THIS TIME SERIES
menu option to quickly access the evaluations. (See Figure 10.3.)
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Figure 10.3: Counters for time series
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CHAPTER 11
Time Series Privacy

Privacy options for time series can be defined in the MORE INFO menu option. (See Figure 11.1.) By
now, time series are only private, i.e., accessible by authorized users (the owner and those who have
been granted access by him or her). The secret link option to share time series with other users will be
available soon.

Figure 11.1: Time series privacy
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CHAPTER 12
Moving Time Series

When you create a time series model, it will be assigned to the same project where the original dataset
is located. Time series can only be assigned to a single project. However, you can move time series
models between projects. The menu option to do this can be found in two places:

1. Click MOVE TO... within the 1-click action menu from the time series view. (See Figure 12.1.)

Figure 12.1: Change project from 1-click menu

2. Click MOVE TO... within the pop up menu from the time series list view. (See Figure 12.2)
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Figure 12.2: Change project from pop up menu
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CHAPTER 13
Stopping Time Series Creation

You can stop the creation of a time series before the task is finished by clicking the DELETE TIME SERIES
option in the 1-click action menu from the time series view. (See Figure 13.1.)

Figure 13.1: Stop time series creation from 1-click menu

Alternatively, click the DELETE TIME SERIES in the pop up menu from the time series list view. (See
Figure 13.2.)

Figure 13.2: Stop time series creation from pop up menu
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Note: if you stop the time series during its creation, you will not be able to resume the same task.
If you want to create the same time series, you will have to start a new task.
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CHAPTER 14
Deleting Time Series

You can delete your time series by clicking the DELETE TIME SERIE option in the 1-click action menu
from the time series view. (See Figure 14.1.)

Figure 14.1: Delete time series from 1-click menu

Alternatively, click the DELETE TIME SERIES in the pop up menu from the time series list view. (See
Figure 14.2.)
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Figure 14.2: Delete time series from pop up menu

A modal window will be displayed asking you for confirmation. After a time series is deleted, it is perma-
nently deleted, and there is no way you (or even the IT folks at BigML) can retrieve it.

Figure 14.3: Confirmation message to delete a time series
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CHAPTER 15
Takeaways

This document covered time series in detail. We conclude it with a list of key points:

• Time series is a supervised learning method used to forecast a numeric field containing time
series data.

• BigML time series are an optimized implementation of the Exponential smoothing method which
can forecast data with trend and seasonal patterns.

• You can set a forecast horizon to make predictions with your time series after the models creation.

• You can define one or multiple objective fields to create your time series model.

• Time series models automatically replace missing values using spline interpolation. You can also
replace them by other values.

• To create time series you just need an existing dataset containing a numeric field with a time-
ordered sequence of regularly spaced data points in time. You can also evaluate your model with
data that the model has not seen before. Then time series can be used to make forecasts. (See
Figure 15.1.)

• You can use the 1-click option to create your time series or you can configure the several pa-
rameters provided by BigML.

• When the time series has been created, you get a chart showing the original data along with all
the models learned from your training data ranked by the performance metric AIC.

• BigML provides different performance metrics by model so you can select the models that will yield
most accurate forecasts.

• You can evaluate your time series model and visually analyze the goodness-of-fit in the time series
chart.

• You can use your time series model to forecast data points in the future.

• You can create, configure, update, and use your time series programmatically via the BigML API
and bindings.

• You can add descriptive information to your time series.

• You can move your time series between projects.

• You can stop your time series creation by deleting them.

• You can permanently delete your existing time series.
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Figure 15.1: Time series workflow
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Glossary

AIC (Akaike Information Criterion) measures the trade-off between the model goodness-of-fit and the
model complexity to avoid overfitting. The lower the AIC, the better. 17, 56

Damping parameter a configurable paremeter of time series models to “dampen” the trend to a flat line
at some point in the future so the trend does not grow indefinitely. 3, 13

Dashboard The BigML web-based interface that helps you privately navigate, visualize, and interact
with your modeling resources. ii, 1, 24, 25

Dataset the structured version of a BigML source. It is used as input to build your predictive models.
For each field in your dataset a number of basic statistics (min, max, mean, etc.) are parsed and
produced as output. 24

Error represents the unpredictable variations in the time series data, and how they influence observed
values. The error is one of the three components of time series models along with the trend and
the seasonality. 4, 13, 17, 20

Forecast the prediction of a time series model for future data points. 1, 3, 12, 30, 39

Forecast interval a measure of the quality of the time series forecasts. The interval of the forecast
for a future data point sets the upper and lower bounds in which the forecast may lay with a 95%
confidence. 4, 13, 31, 39

Instances the data points that represent the entity you want to model, also known as observations or
examples. They are usually the rows in your data with a value (potentially missing) for each field
that describes the entity. 10

Level a weighted sum of all the preceding values in a time series model, with the weights being highest
for the most recent values, and decreasing exponentially for past instances. 3

Objective Field the field that a regression or classification model will predict (also known as target). 9,
24

Overfitting the process of tailoring the model to fit the training data at the expense of generalization. 6,
17

Predicting the result of obtaining the objective field value for your new data using an existing model.
The model returns the predicted value along with a performance measure (confidence for classifi-
cation or expected error for regression). 39

Project an abstract resource that helps you group related BigML resources together. 2, 50

Resource any of the Machine Learning objects provided by BigML that can be used as a building block
in the workflows needed to solve Machine Learning problems. 25
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62 Glossary

Seasonality a pattern of variation that takes over consecutive periods or fluctuations of fixed length.
The seasonality is one of the three components of time series models along with the error and the
trend. 3, 13, 17, 20

Supervised learning a type of Machine Learning problem in which each instance of the data has a
label. The label for each instance is provided in the training data, and a supervised Machine
Learning algorithm learns a function or model that will predict the label given all other features in
the data. The function can then be applied to data unseen during training to predict the label for
unlabeled instances. ii

Time series a sequentially indexed representation of your historical data that can be used to forecast-
ing future values of numerical properties. BigML implements exponential smoothing where the
smoothing parameters assign exponentially increasing weights to most recent instances. Expo-
nential smoothing methods allow the modelization of data with trend and seasonal patterns. 1, 3,
39

Trend represents the long term trajectory of the time-based data. The trend is one of the three compo-
nents of time series models along with the error and the seasonality. 3, 13, 17, 20
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