WhizzML Reference
Manual

The BigML Team

Version 0.43.0

MACHINE LEARNING MADE BEAUTIFULLY SIMPLE

Copyright(C) 2020, BigML, Inc., All rights reserved.
info@bigml.com

BigML and the BigML logo are trademarks or registered trademarks of BigML, Inc. in the United States
of America, the European Union, and other countries.

This work by BigML, Inc. 1is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. Based on work at http://bigml.com.

Last updated October 19, 2020

mailto:\protect info@bigml.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://bigml.com

About this Document

This document provides the full Reference Manual for the WhizzML language, including its standard
library. Whizzml is a symbolic, functional language, with lambda abstractions, mapping constructs and
an extensive standard library geared towards creation and manipulation of BigML resources to compose
arbitrarily complex machine learning workflows.

Contents

1 Basic Concepts 1
1.1 Identifiers e e 1
1.2 Whitespace and Comments L L Lo 1
1.3 Variables vs Syntax oL L e e 1
1.4 Types . . o o e e e e e e e e e e e 2

2 Expressions 3
2.1 Variable References L 3
2.2 Literal Expressions e e e e e e e 3

2.2.1 Numbers e 3
2.2.2 Strings and Booleans oL o 3
223 Lists L e e 3
2.24 0 Sets ... e e e 4
2.2.5 Maps . .. e e e e e e e e e e 4
2.3 Procedure Calls L e e e 4
2.4 Procedureso e e e e e e e 5
2.5 Maps and Lists as Procedures L L 6
2.6 Conditionals oL e e e e 7
2.6.1 Conditionals with ¢fand when. o0 o 7
2.6.2 Conditionals with cond. e 8
2.6.3 Logical and e 8
2.6.4 Logical or L e e 9
2.7 Binding Constructs (let) e 9
2.7.1 Binding List Destructuring with let. L. 9
2.8 SeqUENCING v i e e e e e e e e e e e e e 10
2.9 Tteration L e 11
2.9.1 Tteration with loop/recur. L 11
2.9.2 List Value Mapping with map o oo 11
2.9.3 List Value Mapping with for o o oo 12
2.10 Error Handling o e e 12
2.10.1 Signaling Errors with raise L o e 12
2.10.2 Capturing Errors with handle o oo 13
2.10.3 Capturing Errors with try/catch oo 14
2.10.4 System Errors 14

3 Program Structure 16
3.1 Programs Lo e e e e e e 16
3.2 Definitions oL e e 16

3.2.1 Variable Assignments oL 16
3.2.2 Parallel Variable Assignments e 16
3.2.3 Procedure Definitions 17

4 Standard Procedures 19

4.1

4.2
4.3
4.4
4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12

Utilities o o e e e e e e 19
4.1.1 Tdentity o e e e e e e e e e e 19
4.1.2 Versioning oL e e 20
Equality« o e e e 20
Logical Functions e e e e e e e 21
Procedures L 22
Numbers e e 23
4.5.1 Numerical Type Predicates e 23
4.5.2 Arithmetic Operators e 23
4.5.3 Numeric Coercion and Parsing 23
4.5.4 Comparisons i e e e e e e e 24
4.5.5 Transcedental Functions L L o 25
4.5.6 Random Number Generators, 26
4.5.7 Basic Statistics L e 27
Strings e e e 27
4.6.1 Coercion to String oL e 27
4.6.2 Digests e e e 28
4.6.3 Pretty Printing WhizzML Code, 28
4.6.4 String Manipulation L 29
4.6.5 String Length and Distance L oL 30
4.6.6 Flatline Strings oL e 31
4.6.7 Regular Expressions L e 32
Lists . . o o o e e 33
4.7.1 Constructors L e e e e e e e e e 33
472 ACCESSOTS . . . v i e e e 34
4.7.3 Membership L 36
4.74 Length o o e 36
4.7.5 Extrema Finding L L e 37
4.7.6 Sorting and Reordering Lo e 37
4.7.7 Folding with reduce and iterate oo Lo 37
4.7.8 Filtering« . . L e e 39
4.7.9 Other List Traversal Procedures 39
Sets .o e e e e e e e 39
4.8.1 Construction e e e e 39
4.8.2 Membership oL e 40
4.8.3 Set Operations e 41
Maps . . . o o e e e e e e 41
4.9.1 Construction e e e 41
4.9.2 0 ACCESSOTS « v v v v i e e 42
4.9.3 Element Insertion L 42
4.9.4 Element Removal L e 43
Time o e e e e e e 43
Logging o e e e e e 44
BigML Resources o . o e e e 45
4.12.1 Resource Types o v v i i e e e e e e e e e e e e e 45
4.12.2 Resource Identifiers L 46
4.12.3 Resource Properties e 46
4.12.4 Error Reporting e e 47
4.12.5 Listing Resources L e 47
4.12.6 Creating Resources o i e e e e 49
4.12.7 Waiting for Resource Completion L oL 53
4.12.8 Creating and Waiting for Resource Completion in one Call 54
4.12.9 Fetching Resources e 55
4.12.10Updating Resources e 55
4.12.11 Deleting Resources e e 56
4.12.12Field Procedures L 56
4.12.13Dataset Procedures L L e e e 58

4.12.14 Execution Procedures e 60

4.13 SMACAOWND o e e e
4.14 Resource Workflow e
4.15 Scriptify . . . oo e e

Index

Index of standard procedures

List of Tables

64

66

70

Basic Concepts

WhizzML is case sensitive.

1.1 Identifiers

Most identifiers allowed in common, and not so common, programming languages are valid in WhizzML:
any sequence of letters, digits and other characters that don’t begin with a number are valid identifiers.
The extended character set allowed in identifiers includes

'$%&x+- . /<=>720" _"~

so all the following are valid WhizzML identifiers:

area
dataset-fields

model_23
removeStatusAndUpdateProgress!
number->string

percent’

pi~2

1.2 Whitespace and Comments

Whitespace characters are spaces and newlines, and a semicolon (;) indicates the start of a comment,
which continues to the end of the line.

; thits ©s a comment

;35 this too

(define a 3) ; starting at the semicolon, this is ignored
(define b (+ 1 a)) ;; ditto

1.3 Variables vs Syntax

An identifier may name a type of syntax or it may name a location where a value can be stored. If an
identifier names syntax, it is called a syntactic keyword . If an identifier refers to a value’s location, it is
called a wvariable , and the value associated with the location the variable refers to is called the variable’s
value .

Some expressions are used to create new locations and bind variables to them: those expressions are called
binding constructs . WhizzML’s binding constructs are lambda expressions (Section 2.4), let expressions
(Section 2.7), map expressions (Subsection 2.9.2), for expressions (Subsection 2.9.3), loop/recur expres-
sions (Subsection 2.9.1) and definitions using the define keyword.

1.4 Types

No object satisfies more than one of the following predicates:

® boolean?

e number?

e string?

e list?

® set?

e map?

e procedure?

which define the corresponding types for WhizzML values. In addition, numbers can be further distin-
guished via the predicates:

e integer?

e real?

Expressions

2.1 Variable References

An expression consisting of an identifier representing a variable is a wvariable reference , and its value is
the value stored at the location the variable refers to.

2.2 Literal Expressions

2.2.1 Numbers

Constants of numeric types are expressed using the conventions and notation of Clojure for floating point
values and integers

42

1.2e23

-2.1232E2

0x10 ;5 hexadecimal 10 => 16

017 ;5 octal 17 => 15

2r101 ;; binary 101 => 3

bri1 ;; base 5 11 => 6

2/3 ;5 mational (/ 2 3) => 0.666666666

As seen in the examples, beyond the usual decimal and exponential literals, one can also write literal
values using any base between 2 and 32 (with special notation for hexadecimal and octal) and use exact
rational numbers, which behave as expected when arithmetically combined:

(+ 1/3 1/6 1/2) ;; => 1

2.2.2 Strings and Booleans

Strings are quoted using " and must be single line ("a string", " another string.").

Booleans have two literal values, true and false .

2.2.3 Lists

Literal lists can be written enclosing a list of space-separated literals in square brackets ([1), e.g.

[0123]

["A" -42 truel ;5 lists can be heterogeneous

[["foo" 3] ["bar" 18]] ;; and nested

1 ;; this is the empty list
2.2.4 Sets

Set literals are written by specifiying the literal list of the set’s values, prepended by the symbol #:

#[1 2 3]
#["a" true [1 2] {"a" 3}]
#[a b]

Duplicate values in the list are automatically removed from the resulting set and the order of the elements
in the list is irrelevant.

(= #[1 2 3] #[2 1 3]) ;; => true
(= #[1 2 3] #[2 1 31 2]) ;; => true

2.2.5 Maps
Map literals are represented by enclosing a sequence of alternating keys and values in braces ({}):

{"key0" 3 "keyl" 2} ;5 a map with keys "key0" and "keyl"

{nagen 74
llname n ||Alan||
"scores" [1 0 0 2] ;5 a map with

"address" {"street" "sesame" "number" 3}} ;; mested walues

Values in map entries can have any type, and, like keys, can also include non-literal expressions:

(let (size 123

color "green"
outer-key "a thing"
k "key")

{outer-key {k size (str k 2) color}

(str outer-key 2) [size colorll})
;s => {"a thing" {"key" 123 "key2" "green"}
N "o thing2" [123 "green"]}

Although arbitrary expressions are allowed for the keys in map literals, they must eventually evaluate to
string values.

2.3 Procedure Calls

A procedure call is written by simply enclosing in parenthesis an expression for the procedure to be
called followed by expressions for its arguments. WhizzML is an eager language: the expressions for the
procedure and its arguments (in that order) are fully evaluated before the procedure call.

Oftentimes, the expression for the procedure to be called is simply a variable reference, as in the following
examples:

(+234)

G (/12) x)

(rand)

(create-dataset {"source" src-id})

(wait (create-source {"remote" "http://host.com/foo.csv"}) 1000)

where we call the procedures referenced by the identifiers +, /, *, rand, create-dataset, create-source
and wait. More generally, any expression that evaluates to a procedure is allowed, e.g.:

(Gf (= x 0) * /) 42 x)

which either multiplies or divides 42 by x, depending on whether the latter is zero or not.

It is also possible to apply a procedure to a list of arguments constructed on the fly by means of the
standard library procedure apply, as described in Section 4.4.

2.4 Procedures

User-defined procedure values are created using the lambda keyword, with the following syntax for
lambda expressions :

(lambda [<name>] <formals> <body>)

<name> ::= optional identifier for recursive calls in <body>

<formals> ::= (<id_1> ... <id_n>) || (<id_1> ... <id_n> . <id_n+1>)
where <id_i> are identifiers

<body> ::= list of valid whizzml expressions

As shown, <formals> must have one of the following forms:

e (<id_1> ... <id_n>): The procedure takes a fixed number of arguments. The number of argu-
ments can be zero, in which case <formals> is just the empty list, .

e (<id_1> ... <id_n> . <id_nl>)+: If a space-delimited period precedes the last variable, then
the procedure takes n or more arguments, where n is the number of formal arguments before the
period (n can be zero). The value stored in the binding of the last variable will be a newly allocated
list of the actual arguments left over after all the other actual arguments have been matched up
against the other formal arguments.

A lambda expression evaluates to a procedure that can be called directly:

((lambda (x) (+ x 1)) 41) 55 =2 4R

The optional <name> identifier can be used to refer to the lambda procedure itself within its body, for
recursive definitions. For instance, this lambda expression computes the factorial of its argument:

(lambda fact (x) (if (> x 1) (x x (fact (- x 1))) 1))

As mentioned, fact is in scope only within the lambda’s body, where it’s bound to the procedure value
itself. So we have:

((lambda fact (x) (if (> x 1) (* x (fact (- x 1))) 1)) &) ;; => 120
(let (f (lambda fact (x) (if (> x 1) (* x (fact (- x 1))) 1)))
(f 8)) ;; => 120
(let (fact (lambda fact (x) (if (> x 1) (* x (fact (- x 1))) 1))
(fact 5)) ;; => 120

or assigned a name with define, and subsequently applied using that name:

(define inc (lambda (x) (+ 1 x)))
(inc 41)

The <formals> (possibly empty) list can contain only valid identifiers and can have no duplicates. Some
examples:

(lambda (x y) (+ y %))
(lambda () (rand-int 23))

and using a period separator we can denote a variable number of arguments:

((lambda (xy . z) z) 1 23 456) ;; => [3] 56]
((lambda (. z) z) 1 23 456) ;; => [12 3 / 56]
((Qlambda (x . z) z) 1) ;; => []

See also Subsection 3.2.3 for additional syntactic sugar used to name user-defined procedures.

2.5 Maps and Lists as Procedures

List values can be used as procedures that, when applied to an integer value, return the value in the list
at that position. In other words, lists can be interpreted as a procedure that maps integers to values.
For instance:

([Hall np" llcll] O) ;s => g
(et 1 [123D) [QA2 Q0 Q1 QDD ;;=>1[3123]

Besides the index, one can provide a default value to return if the position is out of bounds:

([uan "p" IICH] 0 Ildll) ;s => g
([nau np" ”C"] 3 "d") 5 => nqn

The action of lists as procedures is easily described in terms of the nth primitive (see Subsection 4.7.2).
If <list> is an arbitrary list, <n> an integer and <x> any WhizzML value, we have the identities:

(<list> <n>) := (nth <1list> <n>)
(<list> <n> <x>) := (nth <list> <n> <x>)

In a similar way, map values can be used as procedures that perform lookups of the key or key paths
passed as first argument, with a second optional argument denoting the value to return if the given key
or key path is not found. When a default value is not given, the map signals an error with code -15. For
instance:

(let (m {"age" 24238 '"name" "Treebeard"}
p {"ent" m "other" 03})
(m "age") ;; => 24238
(m "size") ;; => false
(m "size" "huge") ;; => "huge"
(p ["ent" "name"]) ;; => "Treebeard”
(p ["ent" "name"] "Lev") ;; => "Treebeard”
(p ["a" "name"]) ;; => # Error (code -15) *
(m ["age" "day"l)) ;; => * Error (code -15) *

Note that if <s_n> are arbitrary string values, <map> a map and <x> an arbitrary default value, the
following identities hold:

(<map> (list <s_0> <s_1> ... <s_n>)) := ((<map> <s_0>) (list <s_1> .. <s_n>))
(<map> (list <s_0> <s_1> ... <s_n>) <x>) := ((<map> <s_0>) (list <s_1> .. <s_n>) <x>)

The action of maps as procedures can also be described in terms of the primitives get and get-in
(see Subsection 4.9.2) as follows:

(<map> <s>) := (get <map> <s>)

(<map> <s> <x>) := (get <map> <s> <x>)

(<map> (list <s_0> ... <s_n>)) := (get-in <map> (list <s_0> ... <s_n>))

(<map> (list <s_0> ... <s_n>) <x>) := (get-in <map> (list <s_0> ... <s_n>) <x>)

Lookups using a list of keys generalize to mixed lists of keys and positions, so that a composite value
consisting of maps and lists can be traversed in a single call, using it in the function position. That
behavior is inherited from the get-in primitive. For instance:

(let (m {"kind" "split"
"children" [{"kind" "number" "value" 42}
{"kind" "list" "value" [1 2 3]}]}
1s [Om [1 2 3] m])

(m ["children" 0]1) ;; => {"kind" "number" "value" 42}

(m ["children" 0 "value'"l) ;; => 42

(m ["children" 1 "value" 2]) ;; => 3

(m ["children" 2 "value" 2]) ;; => * Error (code -15) *

(1s [1 "kind"1) ;; => "splait”

(1s [2 2]) ;; => 3

(1s [3 "children" 1 "value" 2])) ;; => 3

Despite the fact that maps and lists can behave as procedures, the primitive procedure? returns false
when applied to map and list values.

2.6 Conditionals

WhizzML offers two conditional expressions, if and cond.

2.6.1 Conditionals with if and when

The if form takes a test expression as its first argument. If it evaluates to any value other than false,
the consequent subexpression is evaluated, otherwise the (optional) alternate subexpression is evaluated.

(if <test> <consequent> <alternate>)

If <alternate> is not provided and <test> is false, the whole if expression evaluates to false.
But when no alternate is used, it is better to use the special form when , which takes a test and a body
(possibly consisting of multiple expressions) that is evaluated only if the test succeeds. Its general form

is
(when <test> <body>)
which is equivalent to

(if <test> (prog <body>))

Examples:
(if ¢ x 3)
(prog (log-info "Creating evaluation')

(create-evaluation {"model" id}))
(log-warn "No evaluation available"))

(if (> x 0)

(/ 42 x)

(if (< x 0)
(/ -33 x)
x))

(when (> x 0)
(log-info "Positive case")
(handle-positive-x x))

2.6.2 Conditionals with cond

WhizzML also offers a compact way of performing conditional code execution based on an arbitrary list
of tests, using the cond keyword. The general syntax follows the pattern:

(cond <testl> <consequentl>
<test2> <consequent2>

<testn> <consequentn>
<alternate>)

which is equivalent to a sequence of if expressions performing the same tests in the same order:

(if <testl>
<consequent1>
(if <test2>
<consequent2>
(if

(if <testn>
<consequentn>
<alternate>) ...) ...))

In words, every test is evaluated in order until one of them yields a value different from false, in which
case the full cond evaluates to the associated <consequent> subexpression. If all tests fail, the result
of the expression is the result of evaluating the final <alternate> subexpression.

Examples:
(cond false 3

false 4
42) ;5 => 42

(cond (> x 3) "big"
(< x 3) "small"
"medium")

2.6.3 Logical and

(and <expl> ... <expn>)

The and special syntax evaluates each of its arguments in turn until one of them yields a false value,
which is then the result of the whole expression. The rest of the arguments are not evaluated, i.e., the
form is short-circuited (which is the reason this is a special form, not definable as a user procedure).

(and (> 23 O) llfOOH nbarn) iR => uba,r,n
(and (> x 0) (< (/ y x) 0.002))

2.6.4 Logical or

(or <expl> ... <expn>)

The or special syntax evaluates each of its arguments in turn until one of them yields a truish value,
which is then the result of the whole expression. The rest of the arguments are not evaluated, i.e., the
form is short-circuited (which is the reason this is a special form, not definable as a user procedure).

2.7 Binding Constructs (let)

In order to define variables at local scope in whizzml, one uses let expressions, which have the following
form:

(let (<id1> <vall>
<id2> <val2>

<idn> <valn>)
<body>)

All left-hand expressions <id1> ... <idn> must be identifiers. Value expressions <vall> ... <valn>
are evaluated in turn and their value bound to the corresponding identifier, which is then usable as a
variable in subsequent value expressions and in <body> .

WhizzML is a statically scoped language. When evaluating <valj> , <id1> ... <idj-1> are visible
(i.e., in scope), but not <idj> , and in subsequent value expressions, the computed value for <idj>
will shadow any variable of the same name in an outer scope.

(define x "a string")

(let (x 42)
(+ x3)) ;; => 45

(let (x O
x (+ x 1)
y (+ x 2))
+xyv) ;5 =>4

x ;; => "a string”

2.7.1 Binding List Destructuring with let

When an expression evaluates to a list, it is common to access its individual elements afterwards. That is
easily accomplished using list accessors (see Subsection 4.7.2); but let bindings support special syntax for
sequential bind destructuring, which allows concise assignment of list elements to named variables
as follows.

Instead of using a single identifier in a let binding to specify a variable, one can use a literal list of
identifiers. The right hand value must then be a list with, at least, as many values as there are identifiers.
The form then binds each identifier to successive elements in the list value. For instance:

(let ([x y] [0 1)
ly xID ;; => [1 0]
(let ([x y] [01 23D
ly x1) ;; => [1 0]
(let ([x] (range 3 4)
[y z]1 [x (x 2 x)])
[x y z1) ;5 => [3 3 6]

More formally, a binding of the form:

(let ([<id0> ... <idn>] <v>
D
D
where <id0> ... <idn> are variable names and <v> is an arbitrary expression that evaluates to a list,

is equivalent to the list of bindings:

(Qet (v <v>
<id0> (nth v 0)
<id1> (nth v 1)

;i;in> (nth v n)
coY)
L)

with v an identifier that does not occur free in the expression <v> .

The dot notation used to denote rest-arguments in procedure parameter declarations (see Section 2.4) is
available in sequence destructure to bind the tail of the list to a name. For instance:

(let ([xy . z] [01234])
z) o, => [2 3 4]

(let ([xy . z] [01D)
z) ;5 => 1]

(let ([. r] (range 3))
r) ;5 => [0 1 2]

That is, a binding of the form:

(let ([<id0> ... <idn> . <y>] <v>
)
.0
where <id1> ... <idn> and <y> are variable names and <v> is an arbitrary expression that evaluates

to a list, is equivalent to the list of bindings:

(let (v <v>
<id0> (nth v 0)
<id1> (nth v 1)

<idn> (nth v n)
<y> (drop n v)
o)

»)
where drop is a primitive that discards the first n elements of a list, v an identifier that does not occur
free in the expression <v> .

2.8 Sequencing

prog can be used to group together a list of expressions, which are evaluated unconditionally. The value
of the last one returned as the value of the whole expression.

(prog <expressionl> ... <expressionn>)

This form is useful in contexts where you can only write a single expression, such as conditional branches,
but one to perform some side-effecting operation before returning the actual value of the expression:

(cond (> x 0) (prog (log-info "Positive value!") x)
(< x 0) (prog (log-info "Negative value!") 0)
(prog (log-info "Zero, returning -1") -1))

2.9 Iteration

Iteration is accomplished explicitly using the loop and recur keywords, or implicitly using either map
or for , as well as the standard library procedure reduce and the special syntax iterate (see Subsec-
tion 4.7.7 for details on the latter two).

2.9.1 [Iteration with loop/recur

Generic iteration can be attained using the loop-recur form, which has the structure:

(loop (<id0> <valO> ... <idn> <valn>) <body>)
<id0> ... <idn> := identifiers bound as variables in <body> with
values <val0> ... <valn> in the first iteration
<body> := an arbitrary body that can contain calls of the form
(recur <val0'> ... <valn'>), which cause the loop body
to be re-entered with <id0> ... <idn> bound to the new
values <valO'> ... <valn'>

For instance, this loop reverses the list [1 2 3 4]:

(loop (in [1 2 3 4]

out [1)
(if (= [1 in)
out ;; we're done tterating, return the result
(recur (tail in) ;; we iterate with in -> (tail in)
(cons (head in) out)) ;; and out -> (cons (head in) out)

and in this other example we compute the number of even values in an input list:

(loop (in input-list
cnt 0)
(cond (= [] input-list) cnt
(= 0 (rem (head input-list) 2)) (recur (tail input-list) (+ 1 cnt))
(recur (tail input-list) cnt)))

The special syntactic form iterate and the standard procedure reduce, which are fully described in Sub-
section 4.7.7, simplify writing loops that compute a final value by traversing several lists.

2.9.2 List Value Mapping with map

Although it could be defined as a user procedure, WhizzML provides a built-in map that applies a given
procedure (its first argument) to each of the elements of the lists provided as a second and subsequent
arguments, and returns the list of results.

(map <proc> <1list0> <listl> ...)

For example:

(map (lambda (x) (+ x 1)) [2 4 6]) ;; => [3 5 7]
(map (lambda (x y) (+ xy)) [1 23] [234]) ;; =>[357]
(map list [true false] [1 2] ["a" "b"]1) ;; => [[true I "a"] [false 2 "b"]]

For a single list, map is functionally equivalent to the following naive definition:

(define (map fn 1lst)
(cond (empty? lst) 1st
(cons (fn (head 1st)) (map fn (tail 1st)))))

For multiple lists, <proc> must take as many arguments as lists are passed in the call, and the mapping
stops when the shortest of the given lists is exhausted. For example:

(map (lambda (x y z) (+ x y 2z)) (range 10) (range 20) (range 2)) ;; => [0 3]
(map (lambda (x y) (if (> xy) xy)) [1 23 4] [-15861) ;; => [15]

Despite its being a special form, map can be used as a procedural value, i.e., as an argument to other
higher order functions, but it’s worth noting that in those cases the performance of the multiple-lists
version will be noticeably worse than the built in invoked when map is used in call position.

2.9.3 List Value Mapping with for
The for form is an alternative form of expressing mapping over lists where we use a body for the values
to be computed in terms of a variable that iterates over a given list.
(for (<id> <1list>) <body>)
which is equivalent to:
(map (lambda (<id>) <body>) <list>)

Examples:
(for (x [1 2 3]) (+ x 1)) ;5 => [2 3 4]

(for (x (range 0 10))
(GAf (=0 (xremx 3)) x0)) ;; =>[0003006 00 9]

2.10 Error Handling

Error handling in whizzml is based on exceptions raised either by the runtime or by the user via the
raise procedure, which throws a given value as an error.

Objects thrown by raise can be of any type, but when the error comes from a predefined function, it
will always be a map with, at least, the keys “message” and “code”.

There are two mechanisms For capturing exceptions: a basic, lower-level one based on the form handle,
and the familiar try/catch construct (which is built as syntactic sugar over the basic handle functional-

ity).

2.10.1 Signaling Errors with raise

To signal an error in user code, use the raise keyword.

(raise <error>)

The above expression throws the value <error> as an exception, to be captured by an exception handler
(see below), or, if none is active, to cause the program to stop.

As mentioned, you can throw any valid value as an error:

(raise "Connection problems")
(raise -23)
(raise {"message" "Empty dataset" "code" 42})

However, it is common to use a map to signal errors, as do by default all built-in procedures (if needed).

The latter always contain the keys “message”, “code” and “instruction”; here’s an example of an error
raised by the / operator:

{"message" "Error computing primitive operation '/': Divide by zero"
"code" -1
"instruction" {"source" {"lines" [1 1][]”columns” [0 6]}
"instruction" "apply"1}}

But that is just a convention: raise will accept any WhizzML value and propagate it as an error to the
currently active error handler.

2.10.2 Capturing Errors with handle

Here is an example that captures a divide by zero exception using the handle syntactic form:

(handle (lambda (e) (log-error e) 42)
(/10 ;5 =>42

The first argument of handle is a function of one argument that is called when the body of the handle
form (the s-expressions following the error handling function) signals an error. The above program will
log the captured error e (a divide by zero exception) and return 24: the value of the whole handle
expression is the value returned by the handle function (when an error is thrown) or the value of its body
if no error is raised.

In general,
(handle <handler> <body>)

registers the single-argument procedure <handler> as the active error handler while the forms in <body>
are being executed. If the evaluation of <body> raises an error, the value thrown will be passed to the
<handler> procedure and the value of the handle expression will be the value that the call to <handler>
returns.

The handler can also be a variable whose value is a single-argument procedure, as in the following example:

(define (on-error e)
(let (code (get e "code"))
(cond (= e -1) 0
(=e 1) -5
(raise e))))

(handle on-error
(when (negative? (get-x))
(raise {"code" -1 "message" "Error: negative x"1}))
(do-something (get-x)))

As you can see, the body of handle can contain more than one form and it is legit to re-raise errors (or
throw new ones) inside an error handler: they will be passed to the previously registered handler, if any,
or just propagate to the top-level and stop the program otherwise.

2.10.3 Capturing Errors with try/catch

WhizzML also includes syntactic sugar for handling errors via the try and catch keywords.
(try <body> (catch <id> <handler-body>))

executes <body> and, in case an error is raised, binds it to the variable <id> which is in the scope of
<handler-body> , to which control is transferred. In other words, the try/catch form is equivalent to

(handle (lambda (<id>) <handler-body>) <body>)

For instance:

(try
(log-info "Trying primary source")
(create-dataset {"source" "source/123678907959482245aa31"})
(catch e
(log-warn "Could not create primary source: " e)
(create-dataset {"source" "source/12345678901234567890abcd"})))

2.10.4 System Errors

Built-in and standard library procedures always raise errors in the form of a map with keys “message”
and “code”; as in the following example:

{"code" -10
"message" "Error computing primitive operation '/': Divide by zero"}

The error codes used by built-in and standard whizzml procedures are shown in Table 2.1.

-10 Division by zero

-15 Key not found

-20 Empty list

-25 List of less than two elements
-30 Arguments out of range

-40 Incorrect number of arguments
-50 Error handling BigML resource
-60 BigML resource creation failed
-100 Generic exception

Table 2.1: Error codes

In addition to these WhizzML system codes, errors raised while creating, modifying or fetching API
resources use the same codes as the API, as listed in the API documentation'. For instance, here is an
error thrown while trying to create a source with a malformed request; the code below:

(handle (lambda (e) e)
(create-dataset {"source" "source/123456789012345678901234"3}))

Thttps://bigml.com/developers/status_codes

https://bigml.com/developers/status_codes
https://bigml.com/developers/status_codes

will evaluate to a map value (thrown by the standard library function create-datsaet), that contains,
at least, two keys:

{"message"
"Error computing primitive operation 'create': Id does not eXist”B
"code" -1201}

Program Structure

3.1 Programs

A WhizzML program consists of a sequence of expressions and definitions (cf. Chapter 2), and it evaluates
to the value of the last expression in the program.

Definitions are only allowed at the top level, and they bind variable identifiers to values (including
procedural values) at global scope.

Expressions and definitions in a program are evaluated sequentially. At the top level of a program, any
expression of the form:

(prog <el> ... <en>)

is totally equivalent to the sequence of expressions and definitions in the body of the prog, that is to the
sequence of expressions

<el>

<en>
3.2 Definitions

3.2.1 Variable Assignments

A global variable is associated with a (possibly newly created) location and value by means of the
define keyword:

(define <id> <expression>)

E.g.:

(define age 46)
(define name "Biel")
(define same-name name)

3.2.2 Parallel Variable Assignments

It is possible to define in parallel more than one variable with a singl define form by using an explicit
list of identifiers instead of a single one:

(define [<id0> ... <idn>] <expression>)

The above expression will be translated to the semantic equivalent of:

(define tmp-var <expression>)
(define <id0> (nth tmp-var 0))
(define <idn> (nth tmp-var n)

where tmp-var is a fresh, private name. From this equivalence it follows that <expression> can evaluate
to a list of more than n elements: the trailing ones will simply be ignored.

For instance:

(define [a b] [1 2])

a ;=1

b ;; => 2

(define (alist h) (list h true false "extra'))
(define [c d e] (alist "a"))

c ;; => gt

d ;; => true

e ;; => false
As in the case of destructuringlet bindings, dot notation is also available (cf. Subsection 2.7.1):
(define [<idO> ... <idn> . <y>] <expression>)

translates to:

(define tmp-var <expression>)
(define <id0> (nth tmp-var 0))

(define <idn> (nth tmp-var n)
(define <y> (drop n tmp-var))

For instance:

(define [a b . c] (range 10))
a ;; => 0

b ;; =>1

ci; =>[23456789]

3.2.3 Procedure Definitions

Since naming procedure values by assigning them to a variable via define is a very common need,
WhizzML provides special syntax for doing it in a shorter form. Formally, the two following definitions
are equivalent:

(define <p-id> (lambda (<id1> ... <idn>) <body>))
(define (<p-id> <id1> ... <idn>) <body>)

as are the two following ones for variadic procedures:

(define <p-id> (lambda (<id1> ... <idn> . <idn+1>) <body>))
(define (<p-id> <id1> ... <idn> . <idn+1>) <body>)

Thus, instead of defining the inc procedure as

(define inc (lambda (x) (+ x 1)))

one can write, equivalently and more idiomatically,

(define (inc x) (+ x 1))

The same pattern applies for any number of arguments:

(define rand-less-than-42 (lambda () (rand-int 42)))
(define (rand-less-than42) (rand-int 42))

(define safe-div (lambda (x y) (if (=y 0) 0 (/ x y))))
(define (safe-div x y) (if (=y 0) 0 (/ x y¥)))

and, in the same way, to functions that take a variable number of arguments. Instead of

(define add (lambda (x . xs) (apply + x xs)))
(define to-list (. xs) xs)

one can define add and to-1list more directly with:

(define (add x . xs) (apply + x xs))
(define (to-list . xs) xs)

Standard Procedures

This chapter provides an exhaustive description of WhizzML’s standard library procedures. For each one
we give first its signature and return type, as in this template:

(proc-name objl obj2) return-type

Optional arguments are enclosed in square brackets:

(proc-name obj1l [obj2]) return-type

When a procedure can take an arbitrary number of arguments (possibly after some required ones), we
denote it by means of an ellipsis. For instance, a procedure taking one or more arguments is denoted as:

(proc-name objl ...) return-type

The name of the arguments in the template reflects their accepted types, using one of the following
prefixes:

e obj for any type.

e str for a string value.

e num for a numeric value.
e int for an integer.

e bool for a boolean value.
e list for an arbitrary list.
e map for an arbitrary map.
e proc for a procedure.

e res for a resource identifier.

4.1 Utilities

4.1.1 Identity
(identity obj) any

The identity procedure just returns its passed argument, whatever its value.

(= (identity x) x) ;; => true (identically)

4.1.2 Versioning

It is possible to access at runtime the current WhizzML version, both as a string and as three separated

integers giving its major, minor and micro components:

(version)

(version-major)
(version-minor)
(version-micro)

(version) ;; => "0.16.1"
(version-major) ;; => 0
(version-minor) ;; => 16
(version-micro) ;; => 1

4.2 Equality

(= objl ...)
(1= objl ...)

string
integer
integer
integer

boolean
boolean

Values of any type can be compared for (structural) equality using the = procedure which takes one or
more arguments and evaluates to true only if all the values are equal. For example:

(= 1) ;; => true
(=1 "one") ;; => false
(let (x "omne") (= x "one")) ;; => true
(= {nan 3 "p" “hello”}
{”bll ||hello|| ||a|| (+ 1 2)}

{uan 3 "p" (str "he ”110”)}) ;= true
The operator != is the logical complement to =.
(1= "hi") ;; => false
(*= "hi" "hi") ;; => false
('= "Hi" "hi") ;5 => true

('=1 (-21) 3) ;; => true

The resources and objects created in WhizzML can be compared using the compare-objects procedure.

(compare-objects res res)

list

The result of the call is a list of the attributes that differ. For identical objects, the result is an empty

list, e.g.:

(compare-objects {"first-key" "string"
"second-key" 2
"third-key" [1 2]}
{"first-key" "string"
"second-key" 2

"third-key" [1 21})
;5 => 1]

If the objects are different, the list has an element for each different attribute. It describes the path to
the attribute in the map structure, the value of the attribute in each object, the type of difference and a
message describing it. The type of differences range from different value types, different lengths for lists,
different values or missing keys.

(compare-objects {"first-key" "string"

"second-key" 2
"third-key" [1 2]}
{"first-key" "a different string"
"second-key" 3
"third-key" [1 4]
"fourth-key" "new attribute"})
;5 => [{"path1" ["first-key"]

55 "path2" ["first-key"]

5 "objg1" "string"

A "obj2" "a different string"”

;s "type" "eq"

A "msg" "The strings in [first-key] differ."}
HH {"pathl" ["second-key"]

55 "path2" ["second-key"]

55 "obg1" 2

¥ "obj2" 3

) "type" "eq"

A "msg" "The numbers in [second-key] differ."}
;s {"pathl" ["third-key" 1]

;s "path2" ["third-key" 1]

¥ "obj1" 2

¥ "obj2" 4

) "type” "eq"

53 "msg" "The numbers in [third-key 1] differ."}
53 {"path1" []

53 "path2" ["fourth-key"]

i "obj1" "

N "obj2" "new attridbute”

5 "type" "missing"

55 "msg" "The key fourth-key is missing in the left hand side."}]

4.3 Logical Functions

Besides the special forms and and or (see Section 2.6), the standard library provides the unary not
function, which complements its boolean argument.

(not obj) boolean

The negation of any non-boolean value is false, as is the negation of true, i.e., any value different from
false represents truth in the language:

(not 3) ;; => false
(not {}) ;; => false
(not [1) ;; => false
(not [1 2]1) ;; => false
(not true) ;; => false

(not false) ;; => true

4.4 Procedures

It is possible to apply a procedure to a list of arguments, by means of the procedure apply . In its
simplest form, apply takes two arguments: the function to call, and a list of the arguments to use to call
it:

(apply <proc> <args-list>)
For example:

(apply + [123]) ;; => (+123) =>6
(apply 11St [I|all ubn]) ;s => (Z’Z,St uau Ilbll) => [uau ubu]

You can easily see that, in general, (apply list x) evaluates to x for any list value of x.

In general, apply can take multiple arguments besides the procedure to call. The full signature of apply
is the following:

(apply proc objargl ... 1list-args) any

proc must be a procedure and 1list-args must be a list. apply then calls proc with the elements of the
list
texttt(concat (list argl ...) list-of-args) as the actual arguments.

(define compose
(lambda (f g)
(lambda (. args)
(f (apply g args)))))

((compose sqrt *) 12 75) ;; => 30

Given a procedure f, one can partially apply it to a list of values and obtain a new procedure of lower
arity using the standard procedure partial:

(partial proc objargl ...) procedure

partial takes a procedure proc and fewer than the normal number of arguments to proc, and returns a
new procedure that takes a variable number of additional args. When called, the returned function calls
proc with objargs1...plus the additional args.

(map (partial + 2) [1 2 3]) ;; => [3 4 5]
(map (partial + 2 4) [1 2 3]) ;; => [7 8 9]

(define prep-ab (partial concat ["a" "b"]))

(prep—ab) ;s => [”a” Ilbll]

(prep-ab [3 1]1) ;; => ["a" "b" 3 1]

(prep-ab ["x" "y"] [false true 2]) ;; => ["a" "b" "z" "y" false true 2]

4.5 Numbers

4.5.1 Numerical Type Predicates

Predicates checking whether any value is a number, integer or real.

(number? obj) boolean
(integer? obj) boolean
(real? obj) boolean

(integer? 0.0) ;; => false
(real? "hello!") ;; => false
(real? 1) ;; => true
(integer? 1) ;; => true

4.5.2 Arithmetic Operators

The basic arithmetic operators take one or more arguments and are represented by their usual symbols:

(+ numl ...) number
(- numl ...) number
(* num1 ...) number
(/ numi) number

Division raises error code -10 if division by zero. If passed only one argument, / computes its inverse.
In addition, the standard library includes the following binary and unary operators on numbers:

(rem intl int2) integer

Computes the remainder of dividing int1 by int2. Raises error code -10 if the latter is zero.

(div intl int2) integer

Computes the integer division numl by int2. Raises error code -10 if the latter is zero.

(sqrt numl) number

Computes the square root of its argument. Raises error code -30 if passed a negative number.

+ 1) ;; =1

+1-1) ;; =>0

(- 23.8 18.2) ;; => /2.0

(/2 ;; => 0.5

(/1 23) ;; => 0.16666667

(rem 23 3) ;; => 2

(div 45 7) ;; => 6

(sqrt 24) ;; => /.898979/85566356
(sqrt 0.144) ;; => 0.3794733192202055

Ul

4.5.3 Numeric Coercion and Parsing

The following operators act on any number, returning an integer in all cases:

(abs num) integer

The absolute value of its argument.

(ceil num) integer

The ceiling, that is, the lowest integer greater than or equal to the given value.

(floor num) integer

The floor of a number is the biggest integer less than or equal to the given number.

(round num) integer

Rounding finds the integer value that is closest to the given number.

(abs -21) ;; => 21

(abs 3.0) ;; => 3.0
(ceil 23.3) ;; => 24
(ceil -128.2) ;; => -128
(floor 12.8) ;; => 12
(floor -12.3) ;; => -13
(round 1.2) ;; => 1
(round 1.5) ;; => 2

(read-number str) number

The standard library provides read-number to parse a string representing a number, using any of the
accepted number literal expressions in WhizzML. This procedure raises error code -30 (domain error) if
passed a string that cannot be parsed.

(read-number "0.1232") ;; => 0.1232

(read-number "0.1232a") ;; => Error

(read-number "-32") ;; => -32

(read-number "0x32") ;; => 50 (hexzadecimal motation)
(read-number "032") ;; => 26 (octal notation)
(read-number "2r111") ;; => 7 (ezplicit base)
(read-number "3/2") ;; => 3/2 (rational number)

4.5.4 Comparisons

(< numl ...) boolean
(<= numl ...) boolean
(> numl ...) boolean
(>= numl ...) boolean

Comparison operators (like, e.g. <) are multivariadic and can take more than two arguments, so that,
say, (< x y z) is equivalent to (and (< x y) (< y z)), or the mathematical expression x < y < z

(<12) ;; => true

(<= 00 3) ;; => true

(> -19 -18) ;; => false

(> -19 -20 -21) ;; => true
(<=1122234 44) ;; => true
(< 0) ;; => true

(< -1) ;; => true
(< 12.343) ;; => true

Comparison operators can also take a single argument, in which case they always evaluate to true

Convenience predicates for direct comparison to zero and parity are also provided:

(zero? num) boolean
(positive? num) boolean
(negative? num) boolean
(even? int) boolean
(odd? int) boolean

(zero? 0) ;; => true

(zero? 0.0) ;; => true
(zero? -2) ;; => false
(positive? 0) ;; => false
(positive? 0.1) ;; => true
(negative? 0) ;; => false
(negative? 0.0) ;; => false
(even? 0) ;; => true

(odd? 3) ;; => true

Furthermore, WhizzML provides procedures for computing the maximum and minimum of any number
of arguments:

(min numil ...) number
(max numil ...) number

(max 10) ;; => 10

(max -1 -20.0 30 10.2) ;; => 10

(min -1.1) ;; => -1.1

(min (sqrt 2) (sqrt 3)) ;; => 1.4142135623730951

4.5.5 Transcedental Functions

Common non-algebraic functions on numbers are also available:

(log num) number
(log2 num) number
(log10 num) number

Logarithms in base e, 2 and 10. These procedures take a positive number as argument, and raise error
code -30 otherwise.

(pow numl num?2) number
(exp numl) number
The general power function returns num1™*™2 and exp uses e as its base, computing e"*™!,

(sin numl) number
(cos numl) number
(tan numl) number

Standard trigonometric functions: sine, cosine and tanget. For all of them, numl is an angle in radians.
We also provide their inverses:

(asin numl) number
(acos numl) number
(atan numl) number

Both asin and acos take a number in the interval [1, —1], raising error code -30 otherwise.

(to-degress numl) number
(to-radians numl) number

Conversion functions from radians to degrees and vice versa.

(sinh numl) number
(cosh numl) number
(tanh numi) number

These are the standard hyperbolic functions.

(gamma numl) number

The gamma function for real-valued arguments is also available. Note that it is undefined for non-positive
integer arguments (including 0).

(log 2) ;; => 0.6931/71805599453

(log (exp 1)) ;; => 1.0

(pow 4 (/ 1 2)) ;; => 2.0

(+ (pow (sin 1.2) 2) (pow (cos 1.2) 2)) ;; => 1.0
(tan (atan -1.2)) ;; => -1.2

(sinh 23.32) ;; => 6.709919691913042E9

(gamma 2) ;; => 1.0000000000000002

4.5.6 Random Number Generators

Each instance of a WhizzML runtime has an implicit random number generator (RNG). The random
number series generated by this RNG are accesible via the following standard procedures omitting the
optional argument rnd-id in all cases.

(rand [rng-id]) number
(rand-range numl num2 [rng-id]) number
(rand-int numi [rng-id]) integer
(set-rng-seed obj [rng-id]) boolean

The rand procedure generates a random number in the interval [0, 1], whereas rand-range uses the range
[numl, num?2] (with both ends arbitrary numbers). Finally, rand-int returns an integer between 0 and
its argument.

The implicit RNG is seeded at random every time a virtual machine is started, so that two runs of
the same program using the functions above will in general obtain different number sequences from the
generator. To produce deterministic results, you can seed the RNG using set-rng-seed and providing
any WhizzML value as seed.

(rand) ;; => 0.5778650511056185

(rand-int 2313) ;; => 501

(rand-range -10 3) ;; => 1.4949024706147611
(set-rng-seed "a seed") ;; => true

Instead of using the implicit RNG, you can create your own RNG instances via create-rng, and use the
returned identifier as the rng argument in the functions above.

(create-rng [objl) rng-id

The value returned by create-rng is a unique identifier for the RNG just created.

(define rng-id (create-rng 42)) ;; any value can be used as seed
(rand rng-id) ;; => 0.13599370513111353

(rand-int 100 rng-id) ;; => 59

(rand-int 100 rng-id) ;; => 10

(rand-range -10 10 rng-id) ;; => -2.855083905160427

(set-rng-seed rng-id "whizzml") ;; => true

You should treat the random indentifier value as an opaque token. Everytime the seed of an RNG is set,
the generator starts over, even if the seed is the same that was used before.

Typically, if you are writing a library that uses random numbers and want to make it deterministic, you
will be using in it your own RNG, created via create-rng with an appropriate key. In that way, you
won’t interfere with other libraries or scripts using the library at hand, nor get affected by other code
setting the implicit RNG’s seed.

4.5.7 Basic Statistics

(mean list) number
(variance list) number
(stdev 1list) number
(chi-squared-test num int) number

mean computes the mean value of a list of numbers, variance their variance and stdev their standard
deviation. chi-squared-test returns the p-value for a given value and degrees of freedom.

mean will raise error code -20 if passed an empty list, and both variance and stdev signal code -25 if
passed a list with less than two numbers. chi-squared-test will raise error code -20 if the first argument
is negative, or the second argument is either non-positive or non-integer.

4.6 Strings

(string? obj) boolean

String values can be recognized via the predicate string?.

4.6.1 Coercion to String

(str objl ...) string

Any value can be coerced to a string using str. The procedure takes an arbitrary number of arguments,
and the result is the concatenation of all the coercions. When acting on string values, str is thus the
string concatenation function.

(str 3) ;; => "3"

(str 3 5) ;; => "35"

(str "3" (+ 3 2)) ;; => "35"

(str "Hello" " " "world") ;; => "Hello world"

As shown in the examples above, str behaves as string concatenation for arguments of type string. To
preserve quotations associated to strings in the result (for instance, because you are generating WhizzML
source code), use the standard procedure pr-str.

(pr-str objl ...) string

(pr-str 3) ;; => "3"

(pr-str 3 5) ;; => "35"

(pr-str n3n (+ 3 2)) 5 => 11\113\11511

(pr—str ||He110|| non ”WOI'ld”) ’, => ”\“Hello\”\" \ll\llwo,r,zld\llll

We also provide a standard procedure that generates a JSON representation a given WhizzML value:

(json-str objl) string

(json-str 3) ;; => "3"
(json-str [2 truel]) ;; => "[2,true]”
(json-str {"a" 2.2 "b" [1 [false "c"11}) ;; => "{\"a\":2.2,\"b\":[1, [false, \"c\"]]}"

4.6.2 Digests

There are three hashing procedures available in the standard library:

(md5 str) string
(shal str) string
(sha256 str) string

These primitives act on the stream of bytes of their input string, str, and return a string representing
the bytes that the cryptographic digest they name produces, in their hexadecimal representation:

(md5 "a text") ;; => "b229386ecl627869d2c71b7df3c9600a"
(shal "a text") ;; => "7081f2babbafff16bibael6282859c8{4baallef"
(sha256 "") ;; => "e3b0c{4298fcic1{9afbf4c8996 b92/27aellef649b934caf95991b7852b855"

As shown, the returned strings use charaters in [0-9a-f] to represent the values of the output bytes:
md5 produces 16 bytes (for a 128 bits digest), shal produces 20 bytes (160 bits) and sha256 produces 32
bytes (256 bits).

4.6.3 Pretty Printing WhizzML Code

As shown in Subsection 4.6.1, values can be coerced to strings using str and pr-str. In addition, one
can use

(ppr-str objl [width]) string

to coerce an arbitrary value to a string preserving quotations (like pr-str) and formatting and indenting
the result as if it were WhizzML code. Unlike pr-str, ppr-str accepts only one value to print and,
optionally, the line width used during formatting.

(ppr-str {"a" 22343 '"bbbbb" 3333}) ;; => "{\"a\" 22343 \"bbbbb\" 3333}"
(ppr-str {"a" 22343 "bbbbb" 3333} 10) ;; => "{\"a\" 223/3\n \"bbbbb\"\n 3333}"
(ppr-str {"a" 22343 "bbbbb" 3333} 10) ;; => "{\"a\" 223/3\n \"bbbbb\" 3333}"

If instead of a value, what you have is a string representing WhizzML code and want to reformat it as a
pretty-printed one, use pretty-whizzml.

(pretty-whizzml str-of-code [width]) string

str-of-code must be a syntactically correct WhizzML code string, and width is the maximum number
of characters per line in the resulting code string.

Pretty printing procedures are useful mainly for code generators (such as reify) and not used often when
programming Machine Learning workflows.

4.6.4 String Manipulation
(subs str intl [int2]) string

The subs procedure extracts the substring from str starting at the zero-based index int1 and up to (but
not including) the character at index int2. The latter is optional, and, if not provided, the substring
takes until the end of str.

(subs "a string" 3) ;; => "tring”
(subs "a string" 0 3) ;; => "a s”
(S'leS ngn 2) ;o= "n

As you can easily check, the following expression will always evaluate to true when n is positive:

(= s (str (subs s 0 n) (subs s n))) ;; true for all strings s

If int2 is greater than the length of the string, we just take characters up to its end:

(subs "a string" 3 2500) ;; => "tring"

If int1 or int2 are negative, they will refer to positions starting at the end of string, i.e., they are
subtracted from (count str). For instance:

(subs "abcd" -1) ;; => "4d"
(subs "abcd" -2) ;; => "cd"
(subs "abcd" 0 -1) ;; => "abc"
(subs "abcd" -1 -1) ;; => "ad"
(subs "abcd" -3 2) ;; => "b"

(join list-of-strings) string
(join str-sep list-of-strings) string

The multivariadic join procedure concatenates a list of strings using an optional separator:
(join "/" ["a" "path" "x.whizzml"]) ;; => "a/path/z.whizzml"

(join nn [lllll ||2||]) ;s => mnyign
(join ["whizz" "ml" "!"1) ;; => "whizzml!"

The inverse operation, splitting a given string, is performed by the multivariadic standard procedures
split and split-regexp:

(split str str-sep) string list
(split str str-sep int) string list
(split str rx-sep) string list

(split str rx-sep int) string list

These procedures take a string to split (str) and either a literal separator (str-sep) or a regular ex-
pression that separators should match (rx-sep), and return a list of strings. The optional argument int
specifies the maximum length of the returned list:

(split "a,b,c" ",") ;; => ["a" "b" "c"]
(split "a,b,c" "," 2) ;; => ["a" "b,c"]
(split "a,b,c" "," 0) ;; => []
(split "a,b,c" "," -2) ;; => []

(split "a,,b,c" ",") ;; => ["a" "" "b" "]
(split-regexp "a,,b,c" ",+") ;; => ["a" "b" "c"]
(split-regexp "a,,b,c" ",+" 2) ;; => ["a" "b,c"]
(split-regexp "a,,b,c" ",+" 0) ;; => []

The standard library also includes the following case conversion procedures:

(lower-case str) string
(upper-case str) string
(capitalize str) string

which perform the expected conversions:

(lower-case "An Example") ;; => "an ezample”
(upper-case "An Example") ;; => "AN EXAMPLE"
(capitalize "an Example") ;; => "An exzample"
(capitalize "3 EXAMPLES") ;; => "3 ezamples"”

Note that, as shown in the above example, capitalize treats its argument as a single unstructured
token, upcasing only its first character.

4.6.5 String Length and Distance

(count str) integer
(empty? str) boolean

The length of a string can be obtained by means of the polymorphic procedure count, which can also be
applied to lists and maps. For convenience, you can use the also polymorphic predicate empty?, which is
a shorthand for (zero? (count str)).

The primitive levenshtein computes, as a non-negative integer, the distance between two given string
values:

(levenshtein strl str2) integer

The Levenshtein distance! between two strings is the minimum number of single-character edits (inser-
tions, deletions or substitutions) required to change one into the other.

(levenshtein "a text" "a text") ;; => 0
(levenshtein "a text" "b text") ;; => 1
(levenshtein "a text" "another xxx") ;; => 7

Thttps://en.wikipedia.org/wiki/Levenshtein_distance

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance

4.6.6 Flatline Strings

WhizzML provides helpers to generate flatline s-expressions as strings (typically for use in resource
creation parameters). The basic function for flatline generation is flatline, which constructs strings via
interpolation of variables.

(flatline str) string

The arguments to flatline are a list of templates, or format strings, to generate the final flatline
expressions, via concatenation. Each string may refer to any WhizzML variable in scope, and it will
be substituted by its value, by quoting it according to the following rules (let’s call the variable to be
substituted x):

e {x} to replace x’s value into the format string:

(let (w "world")
(flatline "(hello {w})")) ;; => "(hello world)"

(define days 12)
(let (delta 2)

(flatline "(= (+ {days} {delta}) (field \"000000\"))"))
;5 => "(= (+ 12 2) (field \"000000\"))"’

o {{x}} to replace x as a quoted value into the format string:

(let (w "something blue")
(flatline "this is {{w}}, " " right?”))
;5 => "this is \"something blue"\, right?”

e @{x} when x is a list, to splice its elements into the format string:

(let (x [1 2 3D)
(flatline "(+ @{x})")) ;; => "(+ 1 2 3)"

e 0{{x}} when x is a list, to splice its (recursively) quoted elements into the format string.:

(let (ids ["000000" "000001"1)
(flatline "(fields @{{ids}})"))
;5 => "(fields \"000000\" \"000001\")"

(let (dids ["O0"™ "1"]
rows [[1 2] ["A" 3]]
eqs (map (lambda (r) (flatline "(= fs (list @{{r}}))")) rows))
(flatline "(let (fs (fields @{{ids}}))\n (not (or @{eqs})))"))
;5 => "(let (fs (fields \"0\" \"1\"))
55 (not (or (= fs (list 1 2)) (= fs (list \"4A\" 3)))))"

As shown, braces have a special meaning in flatline’s format strings. If you need to introduce them
literally, you should use a quoted variable, to avoid ambiguities and parsing errors. For example:

(let (ob "{"
Cb ll}ll)
(flatline "(if (even? x) {{ob}} {{cb}})"))
;s => ”(’I;f (e'uen? m) \u{\u \Il}\ll)ll

Since braces are not part of Flatline’s syntax, the need of quoting them will only arise, as in the above
example, when they appear within string values in the resulting Flatline expression.

https://github.com/bigmlcom/flatline

4.6.7 Regular Expressions

A regular expression in WhizzML is represented as a string following the Perl or Java standard notation.
There is no “regular expression” type, just strings that comply to that format.

(regexp? str) boolean
(re-quote str) regular expression (string)

The regexp? predicate checks whether the string str represents a valid regular expression, and can
therefore be directly used as such, and re-quote returns a string that matches the give string literally.
Thus, (regexp? (re-quote s)) is identically true for any string s.

(regexp? "a") ;; => true
(regexp? "[ablx.") ;; => true
(regexp? "x[a") ;; => false

(re-quote "no special symbols") ;; => "no special symbols”
(re-quote "a dot: .") ;; => "\\fa dot: .\\E"

To check whether a string matches a given regular expression, use the following standard library proce-
dures:

(matches rxstr) list of string
(matches? rxstr) boolean

matches returns the list of matching groups of the regular expression rx found in the string str, or an
empty list if no matches are found, while matches? checks whether the given string matches the given
regular expression, i.e., whether its list of matches is not empty. Hence (matches? r x) is just syntactic
sugar for (not (empty? (matches r x))).

The list returned by matches always contains the original string as its first element, followed by other
matching subgroups in the regular expression, if any. For instance:

(matches ".*x.*" "axz") ;; => ["azz"]
(matches "x([yzk]+)3" "xzzky3") ;; => ["zzzky3" "zzky"]
(matches "x(y)x([zjD)" "xyxj") ;; => ["zyzjz" "y" "5"]1)

Note that both matches and matches? perform full-string matching, not substring matching; e.g.:

(matches? "an x" "an x or two") ;; => false
(matches? "an x [a-z]+" "an x or two") ;; => true

At the substring level, WhizzML provides the following replacement primitives:

(replace str-target rx str-repl) string
(replace-first str-target rx str-repl) string

replace substitutes in str-target all (partial) matches of rx by the value of its third argument (another
string); replace-first works like replace, but performing only one substitution (the first match).

(replace "replace me here and there" "e\\b" "X")
;5 => "replacX mX herX and therX"

(replace-first "replace me here and there" "e\\B" "Y")
;5 => "rYplace me here and there”

We provide a convenience predicate to check for occurrences of a term within a string, with a case-
sensitivity flag:

(contains-string? str-needle str-hay [bool-cs]) boolean

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

The predicate checks whether the string str-needle occurs as a substring in str-hay. By default, the
matching is case-sensitive, but a case-insenstive search can be requested by passing false as the third
argument.

(contains-string? "foo" "bazquuxfoooo") ;; => true
(contains-string? "foo" "bazquuxFOooo" true) ;; => false
(contains-string? "foo" "bazquuxFOooo" false) ;; => true

Likewise, these variants of replace and replace-first take as second argument a literal string to be
replaced, rather than a regular expression:

(replace-string str-target str-needle str-repl) string
(replace-first-string str-target str-needle str-repl) string

For instance:

(replace-string "[ab] in a regexp is not '[ab]' in a string" "[ab]" ".")
;5 =>". in a regexp is not '.' in a string”

(replace-first-string "[ab] in a regexp is not '[ab]' in a string" "[ab]" ".")
;5 => ". in a regexp is not '[ab]’' in a string"

4.7 Lists

List values can be expressed as literals using square brackets (asin [1 2 3]) or constructed via procedures
such as list and cons, among others (see below). The basic accessors are head and tail, but, as we
will see, it is also possible to access list elements by position, count their number, and so on and so forth.

(1ist? obj) boolean

Predicate to check whether a given object is a list.

4.7.1 Constructors

(1ist objl ...) list
(list* objl ...list-or-set-args) list
(cons obj list) list
(append list obj) list
(concat listl ...) list (flatten list) list

The first constructor, list, simply constructs a list whose elements are the arguments passed in the call.
To prepend obj to 1ist and return the resulting list, use cons, and to append an element to the end of
a list, use append. When you have a list listargs and want to prepend to it several values obj1..., you
can use list*. concat returns the result of concatenating all its arguments, which must be lists, and
flatten. Finally, flatten takes any nested combination of lists and returns their contents as a single
list.

(1ist 1 "hello" true) ;; => [1 "hello" true]

(1ist* "hello" "hi" ["goodbye"]) ;; => ["hello" "hi" "goodbye"]
(cons 3 [2 11) ;; => [3 2 1]

(append [1 2] 3) ;; => [1 2 3]

(concat [1 11 [J ["a"1 [1) ;; => [1 1 "a"]

(flatten [1 [2 3] [[[41] [5 6111) ;; => [1 2 3 / 5 6]

Thus, when xs is a list, we have the equivalences

(list* x0 ... xn xs) => (concat (list x0) ... (list xn) xs)
=> (cons x0 (cons x1 ... (cons xn xs)))

Note that list* also accepts as its last argument a set, in which case the set is first converted to
a sequence, with unspecified order, and then the concatenation of the previous elements to the new
sequence performed:

(listx 1 2 #[3 "a"]) ;; => [1 2 "a" 3]
(1ist* #[1 false 3]) ;; => [1 3 false]
(Qistx #[1) ;; => []

As shown in the examples above, when called with a single set argument, 1ist* becomes WhizzML’s set
to list coercion procedure.’

It is also possible to create new lists by repeating a single element or function call.

(repeat int obj) list
(repeatedly int proc) list

The repeat procedure constructs a new list by copying obj the number of times given by int, while
repeatedly calls the procedure proc that number of times and constructs a list with the results of those
calls.

Values for n that are less than zero are treated as zero, and will cause these functions to return an empty
list.

(repeat 5 1) ;; => [1 11 1 1]

(repeat 3 [1 2]) ;; => [[1 2] [1 2] [1 2]]

(repeat "0" x) ;; => []

(repeatedly 5 (lambda () 1)) ;; => [1 1 1 1 1]

(repeatedly 2 rand) ;; => [0.25771884387359023 0.2169657724443823]

Lists of integers can be constructed with range:

(range int[int] [int]) list

If a single integer argument is given the result is all integers greater than or equal to 0, and less than
the argument. If two arguments are given they specify the start (inclusive) and end (exclusive) of the
sequence. A third argument may be passed to specify a step size.

(range 10) ;; => [0 1 2 3 4 56 7 8 9]
(range -2 4) ;; => [-2 -1 01 2 3]
(range 6 20 3) ;; => [6 9 12 15 18]
(range 5 -5 -2) ;; [5 3 1 -1 -3]

4.7.2 Accessors

(head list [objl) object
(tail list) list
(last list [objl) object
(butlast list) list

2Due to the fact that sets and lists are heterogenous, and comparisons between values of different types are not well—
defined, it is not possible to provide a natural ordering when a set is transformed to a list. Thus, to avoid subtle bugs in
real-world programs, most procedures taking lists as arguments will not accept a set: the transformation of sets to lists is
expected to be explicit, either via 1ist* or more sophisticated, user—provided, translation functions.

To access the first element of a list, use head. To get all the elements of a list but its head, ask for its
tail. The dual of those operations are last, which returns the last element of a given list, and butlast,
which returns a list containing all elements of a given list but the last one. All these standard procedures
expect as argument a non-empty list, and will signal error code -20 if passed an empty list and, in the
case of head and last, no default value. Both head and last accept an optional argument obj that is
returned when list is empty instead of throwing an error.

(head ["a" "b" ”C"]) s;o=> Mg

(head [] 42) ;; => 42

(tail ["a" "b" "c"1) ;; => ["b" "c"]

(cons (head ["a" "b" "c"]) (tail ["a" "b" "c"1)) ;; => ["a" "b" "c"]
(last [1 2]) ;; => 2

(last [1 "a") ;; => "a"

(butlast [1 2]) ;; => [1]

(butlast [truel) ;; => []

We have the identities:

(= 1st (cons (head 1st) (tail 1st))) ;; => true for all lists lst
(= 1st (append (butlast 1lst) (last 1st))) ;; => true for all lists lst

(nth list int [obj]) object

Indexed access to the elements of a list is provided by nth, with an optional value to return for out-of-
bounds indexes. The index is zero-based: the head of a list is accessed via (nth 1st 0). nth raises error
code -30 if int is equal or greater than the length of 1ist and no default value (obj) is provided.

As discussed in Section 2.5, explicit calls to nth are rarely needed, because one can directly apply list
values to an index to obtain their elements:

(["a" "p" "c"] 0) ;; => "a"
(["a" "b" "c"] 3 "d") ;; => "d"
(et (1 [1 2 3D
[(12) (L0 (1) (1242)]) ;; => [31 2 42]

See also Subsection 2.7.1 for a way to access list elements via sequential destructuring in let forms.

(insert list int obj) list

The insert procedure inserts a given element at its int-th position. Note that lists, as all WhizzML
values, are immutable: insert constructs and returns a new list, leaving its arguments untouched.

The insertion index int is zero-based, so that (insert lst 0 x) is the same as (cons x lst) and
(insert 1lst (count 1lst) x) is equivalent to (append lst x).

If the insertion position is greater than the list length, the element is just appended to the end of the list.

(insert [1 2 3] 1 "a") ;; => [1 "a" 2 3]
(insert [1 2 3] 5 "t") ;; => [1 2 3 5 "t"]

(take int list) list
(drop int list) list

These procedures return new lists obtained by either taking or droping the first (if int is positive) or
last (if int is negative) int elements of list. Both take and drop accept int larger (in absolute value)
than the size of the collection, in which case they return either the entire collection or an empty list.

(take 4 [1 234 5]) ;;, =>[1 223 /]
(take -2 [1 2 3 4 5]) ;; => [4 5]

(drop 3 [1 2 3 4 5]) ;; => [4 5]
(drop -3 [1 2 3 4 5]) ;; => [1 2]
(take 4 [1 21) ;; => [1 2]

(drop 20 [1 21) ;; => []

(drop -3 [1 21) ;; => []

(take -10 [1 2 3]) ;; => [1 2 3]

We have the trivial equivalences:

n < 0 => (take n 1) == (drop (+ (count 1) n) 1)
n < 0 => (drop n 1) == (take (+ (count 1) n) 1)

4.7.3 Membership

(member? obj list-or-set) boolean

The standard procedure member? performs a linear search of obj, using structural equality (=), over
list-or-set, which can be either a list or a set.

(member? 3 [1 2 8 4 3 2]) ;; => true
(member? {"a" 2} ["foo" {"a" 2}]1) ;; => true
(member? "foo" [1) ;; => false

(remove-duplicates list) list

The remove-duplicates standard procedure ensures all elements in the returned list are distinct, pre-
serving order. The first occurence of each unique element is kept.

(remove-duplicates [1 2 113 2]1) ;; => [1 2 3]
(remove-duplicates [1 2 falsel) ;; => [1 2 false]

(some proc list) object

The some procedure takes a procedure of one argument and a list as its arguments. It applies the input
function to the list elements in order, returning the result of the application if it is anything other than
false. If no element in the list causes the input function to evaluate to something other than false, some
returns false.

(some odd? [2 4 6 7 8]) ;; => true
(some (lambda (n) (if (odd? n) n false)) [2 4 6 7 81) ;; => 7
(some (lambda (n) (if (odd? n) n false)) [2 4 6 8]) ;; => false

4.7.4 Length

(count list) integer
(empty? 1list) boolean

(count {"a" 2 "b" 3}) ;; => 2
(count [18 -23]) ;; => 2
(count "whizzml") ;; => 6
(empty? {}) ;; => true
(empty? "") ;; => true

(empty? [1) ;; => true
(empty? [[11) ;; => false

4.7.5 Extrema Finding

(min-key proc list) object
(max-key proc list) object

The min-key (max-key) method returns the element x in the input list for which the value of (proc x)
is less than (greater than) or equal to the value of (proc y) for any element y in the input list. This can
be useful for, e.g., getting the largest value for a key in a list of maps.

(define 1st [{"a" 2 "b" 9} {"a" 9 "b" 3}])
(min-key (lambda (x) (get x "a")) 1lst) ;; => {"a" 2 "b" 9}
(max-key (lambda (x) (get x "b")) 1st) ;; => {"a” 2 "b" 9}

4.7.6 Sorting and Reordering

(reverse list) list

This standard procedure returns a new list with the same elements as 1ist, but in reverse order.

(sort list) list

Lists of numbers, strings, or lists can be sorted by sort, but in general the lists (and the lists of lists)
must be homogenous or an exception will be thrown.

(sort [2 3 11) ;; => [1 2 3]
(sort [[1] [0 0] [011) ;; => [[o] [1] [0 0]]

(sort-by-key str-key list-of-maps) list

Using sort-by-key, one can sort a list of maps by a specfic key in the given maps. Note that primative
values and maps not containing the specified key are equivalent under the specified ordering and come
before all other values in the returned list.

(sort-by-key ||a|| [{nan 2} {I|all 3} {Hall 1}]
;s => [{llau 1} {llall 2} {Ilall 3}])
(sort—by—key gt [1 {nau 3} {"b" 1} {uan 1}]
5y => [1 {ubu 1} {Ilall 1} {uau 3}])
4.7.7 Folding with reduce and iterate

(reduce proc obj list) object

The reduce procedure is the familiar left fold® for lists, which can be defined in pure WhizzML as:

Shttps://en.wikipedia.org/wiki/Fold_(higher-order_function)

https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://en.wikipedia.org/wiki/Fold_(higher-order_function)

(define (reduce fn init 1st)
(loop (1 1st r init)
(if (empty? 1) r (recur (tail 1) (fn r (head 1))))))

So reduce applies its first argument, a function of two arguments, to its second argument and the first
element of the list given as third argument. Then it applies the function to the result of that call and
the second element of the list, and so on repeteadly until the list is exhausted; i.e., reduce follows the
following reduction pattern:

(reduce fn init 1lst) => (reduce (fn init (head 1lst)) (tail 1lst))

Iteration over a list with an accumulator is so frequent that WhizzML provides also a syntactic form,
iterate , that makes writing folding expressions over one or more lists easier. Its syntax is as follows:

(iterate (<acc> <init-value> <var0> <1list0> <varl> <listi>...)
<body>)

Here, <acc> is a variable name, the accumulator, which takes the initial value <init-value> , and
<varl>...are variable names that take, in order, the values of each of the elements of <1ist0>, <listi1>
..., which must be all expressions evaluating to lists. These variable names can be used in <body> , and
the result of evaluating it for each set of their values is assigned again to <acc> for the next iteration.
In other words, the above iterate skeleton is approximately equivalent to the following loop:

(loop (<acc> <init-value>
vsO <1list0>
vsl <listl>
Sl
(if (some empty? vsO vsl ...)
<acc>
(let (<varO> (head vsO)
<var1> (head vs1)
L)
(recur (prog <body>) (tail vsO0) (tail vsi) ...))))

where vs0, vs1...are local variable names that are not free in <body> . So, for instance:

(iterate (a 0 x (range 4) y [1 8 9 3]) (+ a x y))

is equivalent to the loop:

(loop (a 0
xs (range 4)
ys [1 8 9 3])
(if (empty? xs)

a

(let (x (head xs)
y (head ys))

(recur (+ a x y) (tail xs) (tail ys)))))

We can also rewrite a single-list iterate as a reduce call:

(reduce (lambda (<acc> <var0>)
<body>)
<init-value>
<1list0>)

So, for single lists, iterate lets you write your reductions in a more compact form, specially when <<>
body> is not trivial. But iterate is more powerful than reduce in that it can traverse (in parallel) more
than one list, and also allows early exits of the iteration with break.

Indeed, the reason why the above loop or reduce forms are not exactly equivalent to the corresponding
iterate form is that in the body of iterate you can use the reserved form break to exit early from
the iteration; break takes a single argument which will be the value of the full iterate expression. For
instance:

(iterate (a 0 x [1 20 -1]) (+ a x)) ;; => 20

(iterate (a 0 x [1 20 -11)
(if (negative? x)
(break 0)
(+ax)) ;; =>0

4.7.8 Filtering

(filter proc list) list

The filter procedure returns a filtered version of the input list, where the filtered version includes only
items x for which (proc x) does not evaluate to false.

(filter (lambda (x) (> x 5)) [10 54 3 10 71) ;; => [10 10 7]
(filter (lambda (x) (> x 10)) [10 54 3 10 71) ;; => []

4.7.9 Other List Traversal Procedures

(every? proc list) bool

The every? standard predicate traverses the given list, applying to every element the predicate proc,
and returning true is all applications evaluate to a non-false value:

(every? odd? [1 3 5 7]1) ;; => true
(every? odd? [1) ;; => true
(every? odd? [1 2 3 4 5]) ;; => false

4.8 Sets

WhizzML has a set datatype, representing a collection of unique, unordered values. WhizzML’s set is
implemented as a hash table, and has the associated performance characteristics, including extremely
fast insertion and retrieval. The corresponding type predicate is set?:

(set? obj) boolean

4.8.1 Construction

(set objl ...) set
(set* objl ...list-or-set-args) set

The first constructor, set, simply constructs a set whose elements are the arguments passed in the call,
eliminating any duplicates. When you have a list or a set list-or-set-args and want to add to it
several values objl..., you can use setx.

(set 21 3) ;; => #[1 2 3]

(set [1 2] 3) ;; => #[3 [1 2]]

(setx [2 1 3]) ;; => #[1 2 3]

(setx 3 ["a" 21) ;; => #["a" 3 2]

(setx 3 ["a" 2 31) ;; => #["a" 3 2]

(set* "a" [1 2] #[true "b" "a"l) ;; => #[true "a" "b" [1 2]]
(1ist* (setx 1 2 #[3 41)) ;; => [1 4 3 2]

As shown in the examples above, when called with a single list argument, set* becomes WhizzML’s set
to list coercion procedure, the dual of 1ist*, but not its inverse because sets preserve neither order nor
duplicates:

(Qist* (setx [2 3 "a"])) ;; => ["a" 3 2]
(1list* (setx [3 2 3 "a"])) ;; => ["a" 3 2]

4.8.2 Membership

(add obj set) set
(remove obj set) set

Adding and removing single elements to and from sets is accomplished via the standard procedures add
and remove, while to check whether a given value belongs to a set one can use the overloaded standard
procedure member?:

(add 2 #[1) ;; => #[2]

(add 2 #[1 21) ;; => #[1 2]
(remove 1 #[1 31) ;; => #[3]
(remove 1 #["1" 3]1) ;; => #["1" 3]
(member? "a" #["a" 2]) ;; => true
(member? 3 #["a" 2]) ;; => false

It is also possible to check for subset relationships using the following predicates:

(subset? set-0 set-1 [strict?]) boolean
(superset? set-0 set-1 [strict?]) boolean

The standard predicate subset? (resp. superset?) checks whether its first argument is a subset (resp.
superset) of its second one, i.e., whether the second (resp. first) set contains all the elements in the first
(resp. second) one, e.g.:

(subset? #[1 true] #[true 2 false 1]) ;; => true
(subset? #[1 true] #[true 2 falsel) ;; => false
(subset? a-set a-set) ;; => true

(subset? #[] a-set) ;; => true

(superset? #[true 2 false 1] #[1 truel) ;; => true
(superset? #[true 2 false] #[1 truel) ;; => false
(superset? a-set a-set) ;; => true

(superset? #[] a-set) ;; => false

As shown in the above examples, inclusion checks are non-strict by default, i.e., a set is always a superset
and a subset of itself. To check whether the relationship is strict (that is, whether the two subsets are
strictly different), set the optional argument strict? to true:

(subset? a-set a-set) ;; => true
(superset? a-set a-set) ;; => true

(subset? a-set a-set false) ;; => true
(superset? a-set a-set false) ;; => true
(subset? a-set a-set true) ;; => false
(superset? a-set a-set true) ;; => false

4.8.3 Set Operations

The standard set—theoretical combiners are available for WhizzML sets via the following standard pro-
cedures:

(union set-0 set-1) set
(intersection set-0 set-1) set
(difference set-0 set-1) set

union adds all elements of the first set to the second one, intersection returns all elements in both sets
and difference removes from list-or-set-0 all elements in list-or-set-1. For instance:

(union #[1 2] #[false 1 4]) ;; => #[false 1 4 2]
(union #[] a-set) ;; => a-set

(intersection #[1 2 "c"] #["c" 2 "b"]) ;; => #[2 "c"]
(intersection a-set #[]) ;; => #/[]

(difference #[1 2 3] #[3 11) ;; => #[2]

(difference #[1 2 3] #["a" false truel) ;; => #[1 2 3]
(difference a-set a-set) ;; => #[]

(difference a-set #[]) ;; => a-set

4.9 Maps

4.9.1 Construction

(make-map list-of-keys list-of-values) map
make-map is the basic map constructor in WhizzML. This procedure takes two lists of equal length, and
keys and values match by position.

(let (vO 3 v1 2) (make-map ["k0" "k1"] [vO v11)) ;; => {"k0" 3 "ki1" 2}
(let (ks ["k1" "k0"]) (make-map ks [vO v1])) ;; => {"k1" 3 "k0" 2}

The list of keys and values of a map can be recovered via the procedures:

(keys map) list
(values map) list

So we have the following identities, for any lists ks and vs:

(= (keys (make-map ks vs)) ks) 55 => true
(= (values (make-map ks vs)) vs) ;; => true

It is also possible to construct a new map using a subset of the keys and values in another one, via
select-keys:

(select-keys map list-of-strigs) map

Non-existing keys are ignored. Thus, for instance:

(select—keys {nau 2 "ph' 12 Neh [1 2]} [nan llbll]) 5y => {Ilall 2 mpn 12}
(Select—keys {uan 2 "p" 12 "c" [1 2]} [”C" IIXll]) 5 => {ch [1 2]}
(select-keys {"a" 2 "b" 12 "c" [1 2]} ["d" "x"1) ;;, => {}
(select-keys {"a" 2 "b" 12 "c" [1 21} [1) ;; => {}

4.9.2 Accessors

Access to values in a map is provided by the map itself used as a function (see Section 2.5), get and
get-in, and contains? provides a membership test:

(contains? map str-key) boolean
(get map str-key [obj]) object
(get-in map list-of-keys-or-ints [obj]) object

To access the value associated with a key str-key in a map, we use get, which takes an optional third
argument with the value to return in case the key is not found in map. get-in performs a lookup following
nested maps, given a list of keys and list positions (for cases where the corresponding value in the path
is a list) and, optionally, a default value to return if the element is not found.

(get {"a" 42 "b" 3} "a") ;; => 42

(get {"a" 42} "c" 21) ;; => 21

(get-in {"a" {"b" 34}} ["a" "b"]) ;; => 34

(get-in {"a" [1 2 {"b" [3 41}1} ["a" 2 "b" 0]) ;; => 3
(contains? {"a" 42} "a") ;; => true

(contains? {"c" {"a" 3}}) ;; => false

However, it is more common to simply apply the map value as a procedure to the key or list of keys we
are looking up:

({"a" 42 "b" 3} "a") ;; => 42

({"a" 42} "c" 21) ;; => 21

({"a" {"b" 34}} ["a" "b"1) ;; => 34

({"a" [1 2 {"b" [3 41}1} ["a" 2 "b" 01) ;; => 3

Applicability of maps thus makes explicit use of the get and get-in accessors unnecessary in the vast

majority of cases.*

In order to perform lookups using a path that starts with a list value instead of a map, get-in is actually
overloaded and can take a list as its first argument, making the following lookups valid:

([{nbn 2 ngn 22}] [O |lall]) ;s => 22
([1 [2 [3 041111 1 1 1001) ;; =>4

To avoid undefined values, asking for a key (or key list) that is not contained in a map without providing
a default value raises an error with code -15 (key not found).

4.9.3 Element Insertion

As all WhizzML values, maps are immutable, but you can create new ones by adding values to an existing
one, using assoc, assoc-in and merge:

40ne can concoct scenarios in which the accessor functions are needed because, for instance, they are used (or stored)
indirectly as first class values, but those situations arise very rarely in practice.

(assoc map str-keyl objl ...) map
(assoc-in map list-of-keys obj) map
(merge mapl map2) map

To add key/value pairs to a given map you can use assoc or assoc-in for nested keys. Besides the map,
assoc takes an arbitrary number of alternating keys and values, and will raise a bad arity error (code
-40) if passed an even number of arguments. merge adds to mapl all keys in map2, overriding any one
already in the former.

(assoc {} "key" 42) ;; => {"key" 42}
(assoc {"age" 23} "name" "Johnny") ;; => {"age" 23 "name" "Johnny"}
(assoc {} "key0" {} "keyl" [1 "key3" 42)
;; =2 {eryou {} erylu [] erygu 42}
(assoc-in {"foo" 42 "submap" {"k" 3}} ["submap" "m"] 23)
55 => {"foo" 42 "submap" {"k" 3 "m" 23}}
(merge {nan 2 npn 3} {nan g ¢! 5}) sy o= {uan 8 "p" 3 "ol 5}

4.9.4 Element Removal

One can remove elements from an existing map with dissoc and dissoc-in, which, again, won’t mutate
their map arguments, but, rather, return a new map:

(dissoc map strl ...) map

(dissoc-in map list-of-keys) map

(dj_ssog {"a" 1 "p" Q2 ngn 3} uan) PR {”b" 2 nen 3}

(diSSOC {"a" 1 "p" Q2 "en 3} ngn "C") ;o= {ubu 2}

(dissoc-in {"a" {"b" 3 "c" {"d" 5}}} ["a" "c" "d"])
;i o= {ar {77 3 en {1}

4.10 Time

Time manipulation procedures are currently limited to the primitive current-time, which returns the
current time as the number of milliseconds since Jan 1st, 1970 (that is, the Unix epoch).

(current-time) integer

(current-time) ;; => 1494285448247

The standard library also includes the procedure sleep:

(current-time intmsecs) integer

which takes an integer number of milliseconds and waits (up to 16 seconds), returning the actual number

of milliseconds spent waiting: zero if intmsecs is negative, or its argument up to the maximum sleep
period (16000 milliseconds).

(sleep -3) ;; => 0 (no wait)
(sleep 12345) ;; => 12345
(sleep 10000000) ;; => 16000

4.11 Logging

There’s no interactive input in WhizzML, but you can output logs using the procedures enumerated below.
All of them take any number of arguments, coerce them to strings and ouput the result of concatenating
those strings, prepended by a the log level label, when the current log level is equal or greater to the
requested one.

(log-debug objl ...) false
(log-info objl ...) false
(log-warn objl ...) false
(log-error objl ...) false

For instance, the statement

(let (x 3) (log-info "The x value is " x))

will log the message
INFO: The x value is 3

when you run your script locally. When WhizzML scripts are run on the server side, logs are collected
in a map of the execution metadata, as lists of strings keyed by log level.

As mentioned, logs are only output if the requested log level is not below the current minimum log level.
By default, the minimum log level is set to “info”. You can query and alter it using these two standard
procedures:

(log-level) integer
(set-log-level int) integer

There is also a special form that will automatically log the running time for any group of expressions:

(with-time-log body) object

This form will evaluate its body normally, but will also compute the time the evaluation took, and write
a log with that information. Since it evaluates to its body’s value, the with-time-log expression can be
used in any place its body would be used. For instance:

(+ (with-time-log (+ 1 2 3)) 8) ;; => 14

Evaluating the above expression will also give you a log similar to:
INFO: Elapsed time: 1

Finally, there’s a special log function to report progress in script executions, and an associated accessor:

(log-progress num) number
(logged-progress) number

The log-progress primitive will update the progress reported by your WhizzML execution (when run
in BigML’s servers) to the given value, after coercing it to the unit interval [0, 1]. It evaluates to
the actual value stored as the current progress, which can also be retrieved at any later moment using
logged-progress:

(log-progress 0.12) ;; => 0.12
(logged-progress) ;; => 0.12

(log-progress 0.9) ;; =>
(log-progress 0.7) ;; =>
(logged-progress) ;; => 0.7

(log-progress 23) ;; => 1.
(logged-progress) ;; => 1

4.12 BigML Resources

The WhizzML standard library provides procedures to list, create, fetch, update and delete BigML
resources. There are thus five generic functions that work for any resource type, as well as specialized
versions of the listing and creation calls, where the resource type is implicit.

4.12.1 Resource Types
In resources and the 1ist and create families of calls (see below), the resource type can be any of the
following supported types:

e source

e dataset

e model

e composite

e fusion

e optiml

e ensemble

e prediction

e batchprediction

e evaluation

e anomaly

e anomalyscore

e batchanomalyscore

e cluster

e centroid

e batchcentroid

e association

e associationset

e linearregression

e logisticregression

e correlation

o statisticaltest

e topicmodel

e topicdistribution

e batchtopicdistribution

e deepnet

e timeseries

e forecast

e pca
e projection

e batchprojection
e project

e configuration

e sample

e library

e script

e execution

4.12.2 Resource Identifiers

We provide a few methods for getting common information from resources and their identifiers:

(resource-id? obj) boolean
(parse-resource-id res) list
(resource-types) list
(resource-type res) string
(resource-id res) resource-id

To check whether obj is a well-formed resource identifier, use the resource-id? predicate. Resouce
identifiers are of the form type/bare-id, and parse-resource-id returns a list of the two components
of the identifier, if it is well-formed (or the empty list otherwise). One can ask for a list of all available
resource types using the standard procedure resource-types, which takes no arguments and returns a
sorted list of strings. Finally, given either a resource map or its identifier, the primitives resource-type
and resource-id extract from it the corresponding resource type or resource identifier. In both cases,
passing as argument a value that is not either a resource map or a resource identifier produces the empty
string as the result of the call.

(resource-id? 3) ;; => false
(resource-id? "source/12121232123123123123123") ;; => true
(parse-resource-id "source/12121232123123123123123")

55 => ["source" "12121232123123123123123123"]
(parse-resource-id "not-a-resource-id") ;; => []
(resource-id "source/12121232123123123123123")

;5 => "source/12121232123123123123123"

(resource-id (fetch "source/12121232123123123123123"))

;5 => "source/12121232123123123123123"
(resource-id "nosource/12121232123123123123123123") ;; => ""
(resource-id 3) ;; => "
(resource-id {"foo" 3}) ;; => "
(resource-type "source/12121232123123123123123") ;; => "source"
(resource-type (fetch "source/12121232123123123123123")) ;; => "source"
(resource-type '"nosource/12121232123123123123123123") ;; => ""
(resource-type 3) ;; => ""
(resource-types) ;; => ["anomaly" "anomalyscore" ... "topicmodel"]

4.12.3 Resource Properties

In order to obtain a resource property given its identifier, one needs to fetch it first and then access the
resulting map. This is such a common operation that the standard library provides a helper, optimizing
to fetching minimal information:

(resource-property res-or-id path [default]) any

This procedure takes either a resource identifier or a full resource map (such as the ones returned by
fetch) and extracts from it it the procedure indicated by the string or list of strings path. If the property
is not found, resource-property will throw an error unless a default value (the last, optional argument)
has been provided. So, when id is the identifier of a resource, the call

(resource-property id path default)

is loosely equivalent to

((fetch id) path default)

with the difference that the fetch performed by resource-property sets query string parameters mini-
mizing bandwidth. The name of a resource is requested so often that we provided a trivial specialization:

(resource-name res-or-id [default]) string

See also Subsection 4.12.12 for retrieval of the the "fields" property.

4.12.4 Error Reporting

All resource-related procedures can raise exceptions when the BigML API services report an error in
fulfilling the request. These errors are reported by WhizzML by raising, as usual, a map that always has
as keys “message” and “code”, with the latter being always the error code -50. In addtion, full details
of the error reported by the API, including its code as listed in the BigML API documentation® and
associated HTTP status and extra information, are reported as a map under the key “cause”. Here’s an
example of the error map for a malformed source creation request:

{"code" -50
"message" "Error computing primitive operation 'create': Bad request: "
"instruction" {"source" {"lines" [1 1]
"columns" [0 34]}
"instruction" "apply"}
"cause" {"code" -1204
"http_status" 400

"extra" ["Data or remote arguments are missing"]}}

Errors during resource handling are treated uniformly using exceptions. That means that whenever you
try to use a resource whose status is not either in-progress or finished, the primitives will raise an error
and, unless you are using an error handler (see Section 2.10), execution of your program will stop.

4.12.5 Listing Resources

(resources str-type [map-of-options]) list of map

resources asks the BigML service for a list of available resources belonging to the caller, returned in the
form of a list of maps representing resource metadata.

The first argument of resources is a string naming the type of the resources to be listed and the optional
map-of -options is a map containing the key/values that you would use in the BigML’s API query string

Shttps://bigml.com/developers/status_codes

https://bigml.com/developers/status_codes
https://bigml.com/developers/status_codes

to filter the returned list the corresponding resource type (that is, essentially, the list that you obtain in
JSON via the API as the “objects” key value).

For instance, you can paginate over all of your sources with a snippet of the form:
(define (process-source src))

(loop (offset 0)
(let (srcs (resources "sources" {"offset" offset "limit" 10}))
(map process-source srcs)
(when (not (empty? srcs))
(recur (+ offset (count srcs))))))

Although it is rather trivial to extract a list of identifiers from a list of resource maps, we define it as
part of the standard library:

(resource-ids list-of-maps) list of string

resource-ids is implemented in pure WhizzML as a variation of

(define (resource-ids resources)
(map resource-id resources))

that incorporates a bit more error checking.

For convenience, we define a list function for each resource type:

(list-sources [map-of-options]) list of map

(list-datasets [map-of-options]) list of map
(list-models [map-of-options]) list of map
(list-composites [map-of-options]) list of map
(list-fusions [map-of-options]) list of map
(list-optimls [map-of-options]) list of map
(list-ensembles [map-of-options]) list of map
(list-predictions [map-of-options]) list of map
(list-batchpredictions [map-of-options]) list of map
(list-evaluations [map-of-options]) list of map
(list-anomalies [map-of-options]) list of map
(list-anomalyscores [map-of-options]) list of map
(list-batchanomalyscores [map-of-options]) list of map
(list-clusters [map-of-options]) list of map
(list-centroids [map-of-options]) list of map
(list-batchcentroids [map-of-options]) list of map
(list-associations [map-of-options]) list of map
(list-associationsets [map-of-options]) list of map
(list-linearregressions [map-of-options]) list of map
(list-logisticregressions [map-of-options]) list of map
(list-correlations [map-of-options]) list of map
(list-statisticaltests [map-of-options]) list of map
(list-topicmodels [map-of-options]) list of map
(list-topicdistributions [map-of-options]) list of map
(list-batchtopicdistributions [map-of-options]) list of map
(list-deepnets [map-of-options]) list of map
(list-timeseriess [map-of-options]) list of map
(list-forecasts [map-of-options]) list of map
(list-pcas [map-of-options]) list of map
(list-projections [map-of-options]) list of map
(list-batchprojections [map-of-options]) list of map
(list-projects [map-of-options]) list of map
(list-configurations [map-of-options]) list of map
(list-samples [map-of-options]) list of map
(list-libraries [map-of-options]) list of map
(list-scripts [map-of-options]) list of map
(list-executions [map-of-options]) list of map

4.12.6 Creating Resources

(create str-type map-of-options) resource-id
(create str-type res-parent [map-of-options]) resource-id
(create str-type res-parent res-parent-2 [map-of-options]) resource-id

In create calls, str-type can be any of the supported resource types listed in Subsection 4.12.1 and the
options map accepts the same keys and values as the JSON body of an API call to create the respective
resource. For instance, a call to create a remote source could be as simple as:

(create "source" {"remote" "https://static.bigml.com/csv/iris.csv"})

while for a source named “test source” with a brief description and explicit source parser we would write:

(create "source" {"remote" "https://static.bigml.com/csv/iris.csv"
"name" "test source"
"description" "powered by whizzml"

create just launches resource creation, and doesn’t wait for its completion. It returns the new resource

"source_parser" {"separator"

n.n
>

"header" falsel}})

identifier, as a string. Typically, you will associate that identifier to a variable for later use:

(define src-id (create "source" {"remote" "s3://bucket.com/data.csv"}))
(define ds-id (create '"dataset" {"source" src-id}))

There are two other forms of create taking, in addition to an optional options map, either one or two
resource identifiers which will be the parent or origin of the newly created resource. For instance, the
parent of a model is a dataset, the parent of a dataset can be either a source or another dataset (when
creating subsamplings or filtering), and the parents of an evaluation or batchprediction are a dataset and
a model. Table 4.1 shows the full list of possible parent resources (resources not appearing in the table

don’t have any valid parent). Some examples:

(create "dataset"

"source/121212321231231231231233")

(create "dataset" "dataset/a212b2321231231231231233" {"sample_rate" 0.7})

(create "evaluation"
"dataset/a212b2321231231231231233"
"model/562fe2d8636e1c5ec500688c")

(create "batchcentroid"
"dataset/a212b2321231231231231233"
"cluster/562fe2d8636e1c5ec500688c"
{"name" "test"})

Table 4.1: Possible parent resources in calls to create

Created resource Parent resource
dataset dataset, source
sample dataset
model dataset
ensemble dataset
optiml dataset
linearregression dataset
logisticregression dataset
timeseries dataset
forecast timeseries
deepnet dataset
pca dataset
batchprojection pca
projection pca
prediction fusion, model, deepnet,

timeseries, ensemble, logisti-
cregression, linearregression
evaluation fusion, model, deepnet,
timeseries, ensemble, logisti-
cregression, linearregression
batchprediction fusion, model, deepnet,

ensemble, logisticregres-
sion, linearregression

Second parent resource

dataset

dataset

dataset

Table 4.1: Possible parent resources in calls to create

Created resource Parent resource Second parent resource
cluster dataset
centroid cluster
batchcentroid cluster dataset
anomaly dataset
anomalyscore anomaly
batchanomalyscore anomaly dataset
association dataset
associationset association
statisticaltest dataset
correlation dataset
topicmodel dataset
topicdistribution topicmodel
batchtopicdistribution topicmodel dataset
execution script

For convenience, the standard library offers a method, create*, which will create a list of resources in
parallel, without waiting for completion:

(createx list-of-types list-of-options) list of resource-id

For example:

(createx ["source" "source"]

[{"remote" "http://url/1"} {"remote" "http://url/2"}])

If all resources to be created are of the same type, you may pass a single string for the first parameter,
which will be duplicated implicitly. Thus, the following is equivalent to the above call:

(createx "source" [{"remote" "http://url/1"} {"remote" "http://url/2"}1)

Instead of providing a map of options, you can also use a parent resource when it’s unique, and mix them
as needed with options, as in the following examples:

(createx ["source" "dataset" "model"]
[{"remote" "http://static.bigml.com/csv/iris.csv"}
"source/121212321231231231231233"
"dataset/a212b2321231231231231233"])

The standard library also provides convenience procedures for creation of specific resource types, for each
of the ways the basic create primitive can be invoked. Thus, there is a collection of procedures for
creating resources given either a single options map, a parent resource identifier and an optional options
map, and (for those resources created from two parents, see Table 4.1) two parent resource identifiers
plus an optional options map:

(create-source [res-id res-id-2 map-of-options])
(create-dataset [res-id res-id-2 map-of-options])
(create-model [res-id res-id-2 map-of-options])
(create-composite [res-id res-id-2 map-of-options])
(create-fusion [res-id res-id-2 map-of-options])
(create-optiml [res-id res-id-2 map-of-options])
(create-ensemble [res-id res-id-2 map-of-options])
(create-prediction [res-id res-id-2 map-of-options])
(create-batchprediction [res-id res-id-2 map-of-options])
(create-evaluation [res-id res-id-2 map-of-options])
(create-anomaly [res-id res-id-2 map-of-options])
(create-anomalyscore [res-id res-id-2 map-of-options])
(create-batchanomalyscore [res-id res-id-2 map-of-options])
(create-cluster [res-id res-id-2 map-of-options])
(create-centroid [res-id res-id-2 map-of-options])
(create-batchcentroid [res-id res-id-2 map-of-options])
(create-association [res-id res-id-2 map-of-options])
(create-associationset [res-id res-id-2 map-of-options])
(create-linearregression [res-id res-id-2 map-of-options])
(create-logisticregression [res-id res-id-2 map-of-options])
(create-correlation [res-id res-id-2 map-of-options])
(create-statisticaltest [res-id res-id-2 map-of-options])
(create-topicmodel [res-id res-id-2 map-of-options])
(create-topicdistribution [res-id res-id-2 map-of-options])

(create-batchtopicdistribution [res-id res-id-2 map-of-options])

batchtopicdistribution-id

(create-deepnet [res-id res-id-2 map-of-options])
(create-timeseries [res-id res-id-2 map-of-options])
(create-forecast [res-id res-id-2 map-of-options])
(create-pca [res-id res-id-2 map-of-options])
(create-projection [res-id res-id-2 map-of-options])
(create-batchprojection [res-id res-id-2 map-of-options])
(create-project [res-id res-id-2 map-of-options])
(create-configuration [res-id res-id-2 map-of-options])
(create-sample [res-id res-id-2 map-of-options])
(create-library [res-id res-id-2 map-of-options])
(create-script [res-id res-id-2 map-of-options])
(create-execution [res-id res-id-2 map-of-options])

source-id
dataset-id
model-id
composite-id
fusion-id

optiml-id
ensemble-id
prediction-id
batchprediction-id
evaluation-id
anomaly-id
anomalyscore-id
batchanomalyscore-id
cluster-id
centroid-id
batchcentroid-id
association-id
associationset-id
linearregression-id

logisticregression-id

correlation-id
statisticaltest-id
topicmodel-id
topicdistribution-id

deepnet-id
timeseries-id
forecast-id
pca-id
projection-id
batchprojection-id
project-id
configuration-id
sample-id
library-id
script-id
execution-id

Using the resource-specific create procedures is thus just a matter of directly translating the corresponding

calls to the basic create primitive:

(create-source {"remote" "s3://bucket.com/data.csv"}))
(create-dataset "source/121212321231231231231233")
(create-ensemble "dataset/ababab32ab3ab312312f1233"
{"number_of_models" 13})
(create-prediction "model/562fe2d8636elcbec500688c"
{"input_data" {"age" 23}})
(create-batchanomalyscore "anomaly/fffe2d8636elc5ec50069ac"
"dataset/a212b2321231231231231233")

All create procedures will implicitly wait for their parent resources to finish, without the need for explicit
calls to wait (see Subsection 4.12.7 below) in your code. Thus, despite the fact that when you call, say

(create-source {"remote" "s3://bucket.com/data.csv"}))

the given source is just queued for creation when the procedure create-source returns its identifier, that

identifier can be immediately used in other create calls, and the WhizzML runtime will make sure that
all parent resources are finished before starting creating their children. Thus, the following "one-click"
ensemble from a source identifier is safe:

(let (src-id (create-source {"remote" "s3://bucket.com/data.csv"})
ds-id (create-dataset src-id))
(create-ensemble ds-id {"number_of_models" 203}))

and could even be rewritten without intermediate variables as:

(create-ensemble (create-dataset (create-source {"remote"
"s3://bucket.com/data.csv"}))
{"number_of_models" 20})

It’s also possible to list the ids of created (and not deleted) resources, at any point during the execution
of a whizzml program:

(created-resources) list of resource-id

So, for instance, you could delete all the resources created during a script execution with the following
expression in your source:

(for (id (created-resources)) (delete id))
Some batch resources can create an additional dataset, whose identifier is always found in the output_dataset_resource

property. To obtain a list of created resources that also includes those datasets you can use:

(created-resources*) list of resource-id

To identify resources containing an associated dataset, use:

(batch-resource-types) list of resource-type

This standard procedure returns a list of resource types, all of which have an optional dataset associated
to them. Typical examples are “batchprediction” or “batchprojection”.

4.12.7 Waiting for Resource Completion

Resources created by the create family of functions will evolve from state 1 (queued) to state 5 (finished)
or -1 (faulty). The wait and wait* procedures will block waiting for the resources status to be 5 before
returning its identifier, or signal an error if it reaches -1.

(wait res [int-timeout]) resource-id
(wait* list-of-res-id) list of resource-id
wait returns res as soon as the resource reaches its finished status or the (optional) timeout expires. If

you want to wait forever, don’t pass any timeout to wait.
The standard procedure wait* just waits in turn for each of the resources in 1ist-of-res-id, and returns

the list of resources upon completion. It can be defined in pure WhizzML simply as:

(define (wait* ids) (map wait ids))

6In practical terms, the server won’t let you block indefinitely in these calls, because your script will have a maximum
running time.

If any resource enters a failed state while waiting (or is failed right away), the waiting functions signal
error code -50.

Note that, frequently, you will not need to explicitly call wait on resources that are going to be use to
create other resources, since, as explained in Subsection 4.12.6, the creation primitives implicitly wait
for parent resource completion. The most common use cases for wait or wait* explicit calls are just
before calling fetch to access the metadata of a resource (for instance, you want to use the histogram of
a dataset’s field, and therefore need to make sure the dataset creation is finished) and when assigning a
script’s outputs (to ensure they are usable immediately after the script execution finishes).

4.12.8 Creating and Waiting for Resource Completion in one Call

We offer convenience procedures that will create a resource and use wait until it’s either finished or
in error. The generic procedure is called create-and-wait, and takes the resource type and a map of
creation parameters as arguments:

(create-and-wait str-type map-of-options) resource-id

where the arguments have the same meaning as for create (see Subsection 4.12.6).

As with createx above, there is an equivalent method, create-and-wait* to create a list of resources
in parallel and wait for them all to complete.

(create-and-wait* listof-types list-of-options) list of resource-id

If the creation of all resources completes successfully, the procedure returns a list of resource ids. If not,
the procedure attempts to delete all resources in the list, completed or not, and raises an
error with code -60 and the id of the first failed resource.

There are also specific versions of create and wait for each resource type, each taking as their single
argument a map specifiying the creation parameters:

(create-and-wait-source map-of-options)
(create-and-wait-dataset map-of-options)
(create-and-wait-model map-of-options)
(create-and-wait-composite map-of-options)
(create-and-wait-fusion map-of-options)
(create-and-wait-optiml map-of-options)
(create-and-wait-ensemble map-of-options)
(create-and-wait-prediction map-of-options)
(create-and-wait-batchprediction map-of-options)
(create-and-wait-evaluation map-of-options)
(create-and-wait-anomaly map-of-options)
(create-and-wait-anomalyscore map-of-options)
(create-and-wait-batchanomalyscore map-of-options)
(create-and-wait-cluster map-of-options)
(create-and-wait-centroid map-of-options)
(create-and-wait-batchcentroid map-of-options)
(create-and-wait-association map-of-options)
(create-and-wait-associationset map-of-options)
(create-and-wait-linearregression map-of-options)
(create-and-wait-logisticregression map-of-options)
(create-and-wait-correlation map-of-options)
(create-and-wait-statisticaltest map-of-options)
(create-and-wait-topicmodel map-of-options)
(create-and-wait-topicdistribution map-of-options)
(create-and-wait-batchtopicdistribution map-of-options)
(create-and-wait-deepnet map-of-options)
(create-and-wait-timeseries map-of-options)
(create-and-wait-forecast map-of-options)
(create-and-wait-pca map-of-options)
(create-and-wait-projection map-of-options)
(create-and-wait-batchprojection map-of-options)
(create-and-wait-project map-of-options)
(create-and-wait-configuration map-of-options)
(create-and-wait-sample map-of-options)
(create-and-wait-library map-of-options)
(create-and-wait-script map-of-options)
(create-and-wait-execution map-of-options)

4.12.9 Fetching Resources

source-id

dataset-id

model-id
composite-id
fusion-id

optiml-id
ensemble-id
prediction-id
batchprediction-id
evaluation-id
anomaly-id
anomalyscore-id
batchanomalyscore-id
cluster-id
centroid-id
batchcentroid-id
association-id
associationset-id
linearregression-id
logisticregression-id
correlation-id
statisticaltest-id
topicmodel-id
topicdistribution-id
batchtopicdistribution-id
deepnet-id
timeseries-id
forecast-id

pca-id
projection-id
batchprojection-id
project-id
configuration-id
sample-id

library-id

script-id
execution-id

The fetch call, which takes a resource identifier, retrieves the full resource metadata in its current status.

(fetch res [map-of-options]) resource map

The optional map-of-options argument is a map with any desired key/values to use in the HTTP GET
requests used to fetch the resource. Typical parameters are fields filters, as in the following example:

(fetch "source/1212222343556aa343433"
{"fields" "000000,00000a" "offset" 10})

4.12.10 Updating Resources

To update an existing resource given its id and a map describing the changes to apply (again, with the
key/values that you would use in a regular APT call), use:

(update res map) boolean
(update-and-wait res map) resource-id

The update primitive makes sure the requested resource is finished (waiting for it to finish if necessary) and
requests from the server the given update, specified by means of map. The procedure returns immediately
the resource identifier if the server has accepted the update request, signaling an error code -50 if the
server cannot be contacted or refuses the request.

Resource updates are generally an asynchronous operation in BigML, so you will sometimes want to wait
on an updated resource (see Subsection 4.12.7) in order to see the change you just requested in a fetch
call: the built-in update-and-wait will do that in a single step, and it could be implemented in pure
WhizzML as:

(define (update-and-wait id params)
(wait (update id params)))

Note however that you do not need explicit calls to wait or update-and-wait in order to use an up-
dated resource as the parent of another one (see also Subsection 4.12.6 and Subsection 4.12.7), since the
corresponding create call will implicitly wait for you. Thus, for instance, in the following call:

(create-model (update ds-id {"objective_field" {"id" "000001"3}}))

it is guaranteed that the model will be created using "000001" as its objective field (in other words,
the update operation is started and completed before create-model starts, despite the fact that it is
asynchronous).

4.12.11 Deleting Resources

(delete res [map]) boolean
(delete* list-of-res-id) list of boolean

The delete function deletes any resource type from your account. On success, delete returns true.
There are a few cases where a delete request may be accompanied by options (which in the APT appear in
the request’s query string). For instance, when deleting executions, one can request the deletion of their
child resources by setting delete_all to true. For those cases, delete accepts an optional map argument,
map. deletex iterates over the given list of resource identifiers, deleting all of them and returning a list
of success flags.

Examples:

(delete "sample/57a3c4dab8a27e5803005880")
(delete "execution/57abf210eb3273117e000000" {"delete_all" truel})

4.12.12 Field Procedures
The standard library includes some helper procedures to aid in the manipulation of field maps and
individual fields, as described below.

Field descriptors are present in many BigML resources, usually as a map under the key “fields”, and play
an important role in most workflows. Each field is identified by a unique identifier (usually, a key in a

RN

fields map) and is described as a map with keys such as “name”, “optype” or “summary”.

Fields map retrieval

To extract the fields map from a resource we can use:

(resource-fields res-or-id) map

This procedure takes either a resource identifier or a full resource map (such as the ones returned by
fetch) and extracts from it its map of fields. If the given argument is not of the correct type, an empty
map is returned. For convenience, all the values in the returned map contain the key "id" with the
corresponding field identifier.

Once we have at our disposal a fields map, a very common operation is to fetch from it the descriptor of
a single field. If we know the field identifier, that operation is trivial (just a map lookup), but it’s often
the case that we want to perform a lookup by field name.

(find-field map-of-fields str) map

The standard procedure find-field takes a fields map (as returned by, e.g., resource-fields) and
looks up an individual field by either its identifier or its name (passed as str). The procedure returns
false if the lookup fails.

Field properties

An individual field descriptor is a map with the field’s properties. To make sure a map value is actually
a field descriptor you can use the field? predicate:

(field? map) boolean

This procedure will make sure that the passed map has a “name” and an “optype” keys, with valid a value
for them, so that they contain the bare minimum information related to a field.

There is a collection of predicates to check the optype of a given field:

(categorical-field? map) boolean
(numeric-field? map) boolean
(text-field? map) boolean
(items-field? map) boolean
(image-field? map) boolean
(path-field? map) boolean
(datetime-field? map) boolean

An important bit of information contained in field summaries is the field’s distribution, i.e., how the
field’s values are distributed across categories, bins, items or terms, depending on their specific optype.
In all cases, the distribution is represented as a list of pairs. In each pair, the first component is the value
that is being counted (category, bin center, item name, term), and the second component is its count
(number of instances associated to the first value). The standard procedure field-distribution gives
access to that information, regardless of the field’s optype:

(field-distribution map) list-of-pair

As mentioned, for categorical fields this procedure will return the “categories” in the field’s “summary”,
for numeric field it will retrive either “bins” or “counts”, for text field the key inside the summary will be
“tag_cloud” and, for item fields, “items”.

In the case of categorical, items and text fields, it is often useful to get a list of all the first elements in
the distribution, which correspond, respectively, to the list of categories, items and terms for the field.
For convenience, there are predefined procedures returning directly those lists:

(field-categories map) list-of-string
(field-items map) list-of-string
(field-terms map) list-of-string

Field maps

Same resources taking as inputs collections of other resources that contain fields need a mapping from
a set of fields to another one. For instance, when creating multi-datasets one may need to specify a
mapping between fields of different input datasets; or, when making a batch prediction, sometimes we
need to specify in the request what fields of the dataset to be scored correspond to the model fields. In
those and other cases, a fields map is specified as a WhizzML map that maps identifiers between two sets
of fields, with the default being an identity map.

It is not rare to find cases where the fields match by name instead of by identifier, and we need to
construct an identifiers map associating together fields of the same name. E.g., given field maps:

{"000000" {"name" "field a" ...}
"000001" {"name" "field b" ...}}
and
{"000000" {"name" "field b" ...}
"000001" {"name" "field a" ...}}

we would like to specify the fields map:

{"000000" "000001"
"000001" "000000"}

This happens often enough that the standard library provides a function to compute a fields map matching
by the names of fields in two input collections (maps) of fields:

(match-fields-by-name from-fields to-fields) map

So for instance, in simple cases, we could construct a fields map for a batch prediction from the corre-
spoding supervised model and dataset with code along the lines of:

(match-fields-by-name ((fetch model-id) ["model" "model_fields"])
(resource-fields dataset-id))

4.12.13 Dataset Procedures

This section describes standard procedures specific to the creation and manipulation of datasets.

Objective field

(dataset-get-objective-id dataset-id) string

Explores the given dataset metadata map and extracts from it the preferred objective field identifier.
Some datasets have it already precomputed, and the function is then rather trivial (basically, a get-in);
otherwise, a valid objective is selected from the field information, following the same algorithm as BigML’s
server side.

Row distance

BigML defines a positive-definite metric between instances of a dataset (used, for instance in clustering
algorithms), which depends only on the properties of the dataset’s fields. The primitives row-distance
and row-distance-squared provide access to that metric.

(row-distance map-of-fields map-point [map-point2 map-scales]) number
(row-distance-squared map-of-fields map-point [map-point2 map-scales]) number

The squared version is provided for convenience, as it’s computationally more efficient, and squared
distances are used directly in many cases. All arguments are maps with field identifiers as keys. The
parameter map-of-fields gives, for each field identifier, its descriptor map (as found in any BigML
resource under the “fields” key); map-point and map-point2 are maps from field identifier to field value,
and each one therefore defines a dataset instance. Finally, map-scales associates to each field a numerical
scale to be used by the metric during the computation (that allows weighting of the individual dimensions
involved in the distance computation).

Dataset splits

Splitting a dataset in two disjoint parts is a common operation, used for instance to separate a testing
subset of our input data for evaluation purposes.

The WhizzML standard library provides two procedures for creating dataset splits:

(create-dataset-split dataset-id rate seed [first-options second-options])
list-of-dataset-id

(create-random-dataset-split dataset-id rate [first-options second-options])
list-of-dataset-id

To create a split, create-dataset-split needs an input dataset, given by its identifier, a sampling rate
(a number between 0.0 and 1.0), which indicates the portion of the dataset that is sampled in the first
part (so it’ll be composed of N * rate instances, where N is the total number of instances in the input
dataset, while the second part will be composed of those instances not in the first, and therefore have
N x (1 — rate) instances) and a seed used to initialize the random number generator that is used to
select instances. If you pass the same seed to two calls to create-dataset-split you’ll obtain identical
results. For convenience, the standard library includes create-random-dataset-split, which picks up
a random seed for you, and that is simply defined as:

(define (create-random-dataset-split dataset-id rate)
(create-dataset-split dataset-id rate (str (rand-int 100000))))

Both procedures return a list of two elements, namely the identifiers of the datasets containing, respec-
tively, the first and second parts of the instances in the input dataset.

Both procedures also take two optional maps, first-options and second-options, which are options
that will be passed to the dataset creation calls for each half of the split. For instance, if you want that
the first dataset in a split is called “First half” and the second “Second half”, you would use something
like:

(create-random-dataset-split '"dataset/a212b2321231231231231233"
0.8
"name" "First half"}
{"name" "Second half"})

Dataset merges

Multiple datasets can be merged into one in BigML simply by passing an "origin datasets" list to
create-dataset, with the only limitation that there is a maximum number of datasets accepted.” To skip
that limitation, and perform the merge in an as parallel way as possible, we provide the merge-datasets
primitive:

732 as of this writing

(merge-datasets list-of-datasets [map-params]) dataset-id

The list of datasets can contain either dataset identifiers, or maps specifying the id and additional
properties such as field maps, and any additional arguments passed as map-params will be used in all
internal dataset creation requests. Here’s an example of a script concatenating a dataset a hundred times,
starting from an inline source:

(define data "a,b,c,1\na,b,c,2\nb,c,d,3\nb,b,c,3\na,a,a,4")
(define src-id (create-source {"data" datal}))
(define ds-id (create-dataset src-id))

(define name "whizzml-test")
(define mds (merge-datasets (repeat 100 {"id" ds-id}) {"name" name}))

If we wanted to juxtapose instead of concatenate, we could write

(define mds (merge-datasets (repeat 100 {"id" ds-id})
{"name" name "juxtapose" true}))

instead.

4.12.14 Execution Procedures
This section describes auxiliary procedures that can be helpful when using the results of an execution
as inputs for other executions.

Executions can be used in scripts as any other resource. It’s a common practice to use the outputs of an
execution as values in a script. In order to help doing that, the following procedures might be handy:

(execution-inputs execution-id [list-of-names]) list
(execution-outputs execution-id [list-of-names]) list
(execution-output-resources execution-id [list-of-names]) list
(execution-sources execution-id) list
(execution-logs execution-id) list

The mandatory argument for all the procedures will be the execution-id of the execution that stores the
information. In addition to that, some of the procedures will accept as a second optional argument a list
of names to filter out the items to be included in the returned list. execution-inputs will return the list
of values used as input arguments in the execution (filtered by argument name, if the second argument
is used). execution-outputs will return the list of outputs (filtered by the output name if the second
argument is set). The execution-output-resources will return the list of BigML resources created in
the execution and the variables they were assigned to, if any. If the second argument is used, the list will
be filtered by variable name. execution-sources returns a list of the scripts being executed and their
dependencies, if any. The index of this list is used as reference in the execution call-stack and location
information to reference errors. Finally, execution-logs will return the lines logged to the console.

Using as example a script with this simple code:

(log-info "That's foo: " foo)
(log-info "Here's bar: " bar)
(define sources (for (i (range bar))
(create-source {"remote"
"https://static.bigml.com/csv/iris.csv"})))
(define sourcel (sources 0))
(define source2 (sources 1))
(define division (/ foo bar)

these would be the outputs of each of the procedures described above:

(execution-inputs "execution/5d5c4a0eeba31d6280001ee2")
;5 => [["bar" 2] ["foo" 6]]

(execution-inputs "execution/5d5c4a0eeba31d6280001ee2" ["bar"])
55 => [["bar" 2]]

(execution-outputs "execution/5d5c4a0eeba31d6280001ee2")
;5 => [["division” 3.0 "Number"]

s ["sources"
55 ["source/5d5¢c4a0ec5f953036601bd0b" "source/5d5¢c4a0ec5f953036e0333fb"]
” ”L'l;St Il]]

(execution-output-resources "execution/5d5c578042129f7dfc00339d" ["source2"])
;5 => [{"code" 5

;s "id" "source/5d5¢c5780c5f953036d00ae11"
;s "last_update" 1566332800805

5 "progress" 1.0

N "state" "finished"

5 "task" "Done"

5 "variable" "sourcel'}]

(execution-sources "execution/5d5c4a0eeba31d6280001ee2")
;; => [["script/5d5c4a04ebad1d6280001edf" ""]]

(execution-logs "execution/5d5c4a0eeba31d6280001ee2")
;5 => [["info" "2019-08-20T19:29:18.239Z" 0 1 "That's foo: 6"]
55 ["info" "2019-08-20T19:29:18.239Z" 0 2 "Here's bar: 2"]]

4.13 SMACdown

SMAC is a meta-algorithm for the optimization of any candidate function against a set of possible
parameter values. For example, the function may be a random forest learning algorithm. In that case,
the parameters would be the number of trees, number of random candidates, pruning or no pruning, etc.
The criterion could be the error of the generated model on a holdout set.

WhizzML provides an implementation of the SMAC algorithm, dumbed down so that almost anyone
can insert it somewhere in their existing optimization pipeline.

To use the provided function, smacdown-optimize one need only provide two functions as arguments, a
generator and an evaluator. The generator takes no arguments and returns a random set of parameters
to be evaluated as a map. For example:

{"number_of_trees" 57
"random_candidates" 20
"pruning" true}

The values of the parameters can be numbers, strings, or boolean values. There are no further restrictions
on the form of the map, except that every generated map must have the same set of keys.

The evaluator takes a list of parameter maps, of the sort generated by generator, evaluates these
candidates using the chosen criterion, and returns the resulting list of evaluations. For example, the
evaluator may train a model using each set of candidate parameters provided, then evaluate those models
on a holdout set of data, returning the error of each one. Note that the criterion must be constructed
so that lower values indicate higher quality parameters. Said another way, SMACdown will search
for the set of parameters that minimizes the objective criterion.

Given these two functions, smacdown-optimize learns a clever search strategy for the best set of param-
eters. It returns a list of all of the maps of parameters it has evaluated, sorted high to low by quality, so
the lowest score for the objective criterion is first. The objective criterion for each of the output maps is
stored under the key actual_value and the parameters evaluated are stored under the key parameters.

4.14 Resource Workflow

Every resource in BigML is totally reproducible. By inspecting the attributes defined in its JSON and
those of the resources it’s derived from, we can reproduce the chain of steps that led to its creation. The
summary of these create|update|get operations can be obtained using the resource-workflow procedure.

(resource-workflow res-id bool bool [mapoptions]) map

The first argument should be the ID of the resource whose creation workflow is rebuilt. When the second
one is set to true the workflow will not contain the name or the range or rows in the case of datasets,
so that you can reuse it to process new data files with the same structures. The third attribute set to
true will only rebuild the last step of the workflow. The last optional argument can contain a map where
different parameters can be used to tweak the process.

The available options so far are excluded-attrs, stop-res-ids and prediction-wf. We can use
excluded-attrs mapped to a list of attributes so that they are not included in the procedure out-
put. Using this option you can avoid storing some of the attributes that, even if they are mandatory for
tracing purposes, need to be spared when retraining or sharing resources, like the project a resource has
been created in. Also to stop the recursive process at some especific resource, we can use stop-res-ids
mapped to a list of IDs. When any of these resources are found in the chain of parent resources, the
recursive call will stop. Finally, the prediction-wf set to true will generate a wokflow that only takes
into account the transformations needed for the test datasets to reproduce prediction resources, like a
batchprediction or a batchcentroid. The models involved in the prediction chain will be stored in
the inputs attribute of the workflow using their IDs.

The resulting map will contain the following attributes:

‘Workflow Description
attribute
steps List of maps describing the information about the resource being operated on,
and the operations applied
inputs List of inputs that must be provided for the workflow to start, either IDs or
remote URLs
output ID of the resource being reified
name Name of the resource being reified
description Description of the workflow
last-step Whether the workflow includes only the last step
reuse Whether the workflow has been adapted for reuse
type-counters Summary of the number of resources per type used in the workflow
mapped-ids Map of the IDs in the workflow to the variables that represent them
var-ids Map of the variable names in the workflow to the original IDs

Table 4.2: Workflow attributes

Each step has also a uniform structure:

Step attribute Description

action Type of action (create, update or get)

origin The variable that contains the information used as origin when operating on
the resource. It can also be a map with the origin attribute and the variable
that contains its value

order Number of the step in the workflow

output Variable that will contain the generated output

args Arguments used in the API call action. Contains both the origin information
and the configuration attributes. Usually it’s a map, but when the action is
get

ref Map that contains the reference information for the resource being the output

of the step, like its ID, name, name options and creator

Table 4.3: Step attributes

An example of a step would be.

{"ref"
{"id" "dataset/5babb5bf92fb56105d001£32"
"name" "iris"

"name_options" "150 instances, 5 fields (4 numeric, 1 text)"
"creator" "demo_user"}
"output" "dataset2"

"action" "create"
"origin" {"source" "source2"}
llargsll

{"source" "source2" "objective_field" {"id" "000003"} "all_fields" false}
"order" 6%}

4.15 Scriptify

The scriptify procedure will receive the result of a resource-workflow and produce from that the
WhizzML code needed to rebuild it. Depending on whether the reuse flag value, the code will use or not
the original ranges and names for every resource created. The result of the procedure is a string that
contains the source code describing the workflow steps.

Also, workflows created using the prediction-wf flag will generate predictive scripts. These scripts will
have a headers section where all models involved in the workflow are defined using their IDs and only
the test sources and/or datasets are recreated from the data provided as input for the script.

(scriptify workflow) string

#, 4

and, 8

apply, 22
argument number, 6

binding constructs, 2
boolean, 3

boolean?, 2

break, 39

call, 4

case, 1, 30
catch, 14
cluster, 58
coercion, 24
comment, 1
concatenate, 27
cond, 8
conditional, 8
constant, 3
constants, 3

dataset
creation, 59
split, 59
test, 59
define, 16
definition, 16
definitions, 16
degree, 26
destructuring bind, 9
digest, 28
distance, 58

errors, 12

exception, 12

execution, 60

execution procedures, 60
execution progress, 44

false, 3
for, 11, 12

function, 5
function definition, 6

gamma function, 26
global variable, 16

handle, 13

hashing functions, 28
hashset, 39
hexadecimal, 3
hyperbolic function, 26

identifier, 1
if, 7

in scope, 9
integer?, 2

iterate, 38

lambda, 5

lambda expressions, 5
let, 9

Levenshtein, 30

list literal, 3

list to set, 40

list?, 2

literal value, 3

local bindings, 9
local variables, 9
logarithm, 25

logical operator, 8, 9
loop, 11

loops, 11

map, 11
map literal, 4
map?, 2
meta-algorithm, 61
multi-dataset

limit, 59
multiple definition, 16

number?, 2
numeric base, 3
numeric constant, 3

numeric literals, 3

objective field, 58

octal, 3

or, 9

origin datasets
limit, 59

parallel assignment, 16
parsing string, 24
procedure, 5

procedure call, 4
procedure definition, 17
procedure defintion, 6
procedure?, 2

prog, 10

progress, 44

radian, 26

raise, 12

random, 26

random numbers, 26
real?, 2

recur, 11

recursive lambda, 5
regexp quoting, 32
regular expressions, 32
reify, 62, 63
resource errors, 47
row distance, 58

scope, 9

script, 60

scriptify, 62, 63
seeding, 26

set, 39

set literal, 4

set to list, 34

set?, 2

SMAC, 61

static scope, 9
string distance, 30
string literal, 3
string to number, 24
string?, 2

syntactic keyword, 1

test data, 59

top level, 16
trigonometric function, 25
true, 3

try, 14

types, 2

value, 1

variable, 1

variable reference, 3
variadic procedure, 6

when, 7
whitespace, 1
workflow, 62, 63

Index of Standard Procedures

* 23 create-and-wait*, 54

+, 23 create-and-wait-anomaly, 55

- 23 create-and-wait-anomalyscore, 55

/s 23 create-and-wait-association, 55

5 1 create-and-wait-associationset, 55

<, 24 create-and-wait-batchanomalyscore, 55

<=,24 create-and-wait-batchcentroid, 55

=, 20 create-and-wait-batchprediction, 55

>, 24 create-and-wait-batchprojection, 55

>=, 24 create-and-wait-batchtopicdistribution, 55
create-and-wait-centroid, 55

abs, 23 create-and-wait-cluster, 55

acos, 26 create-and-wait-composite, 55

add, 40 create-and-wait-configuration, 55

and, 8 create-and-wait-correlation, 55

append, 33 create-and-wait-dataset, 5

B
5
apply, 22 create-and-wait-deepnet, 55
5

U i

asin, '(4)3 create-and-wait-ensemble, 55

assoc, - 13 create-and-wait-evaluation, 55
_ln . .

ass0e K create-and-wait-execution, 55

atan, 26

)

create-and-wait-forecast, 55

. T -and-wait-fusion, 55
batch-resource-types, 53 ¢ eaze a 3 a': 1.111; on,)r‘)r
boolean?, 2 create-and-wait-library, 55 .
break, 39 create—and—Wa¥t-hne.zar.regresao.n, 55
butlast. 34 create-and-wait-logisticregression, 55

) - .

create-and-wait-model, 55

capitalize, 30 create-and-wait-optiml, 55

catch, 14 create-and-wait-pca, 55
categorical-field?, 57 create-and-wait-prediction, 55
ceil, 24 create-and-wait-project, 55

ot

create-and-wait-projection, 5
create-and-wait-sample, 55

chi-squared-test, 27
compare-objects, 20

concat, 33 create-and-wait-script, 55
cond, 8 create-and-wait-source, 55
cons, 33 create-and-wait-statisticaltest, 55

contains-string?, 32 create-and-wait-timeseries, 55
contains?, 42 create-and-wait-topicdistribution, 55
cos, 25 create-and-wait-topicmodel, 55
cosh, 26 create-anomaly, 52

count, 30, 36
create, 49

create®, 51
create-and-wait, 54

create-anomalyscore, 52
create-association, 52
create-associationset, 52

create-batchanomalyscore, 52

create-batchcentroid, 52
create-batchprediction, 52
create-batchprojection, 52
create-batchtopicdistribution, 52
create-centroid, 52
create-cluster, 52
create-composite, 52
create-configuration, 52
create-correlation, 52
create-dataset, 52
create-dataset-split, 59
create-deepnet, 52
create-ensemble, 52
create-evaluation, 52
create-execution, 52
create-forecast, 52
create-fusion, 52
create-library, 52
create-linearregression, 52
create-logisticregression, 52
create-model, 52
create-optiml, 52
create-pca, H2
create-prediction, 52
create-project, 52
create-projection, 52
create-random-dataset-split, 59
create-rng, 26
create-sample, 52
create-script, 52
create-source, 52
create-statisticaltest, 52
create-timeseries, 52
create-topicdistribution, 52
create-topicmodel, 52
created-resources, 53
created-resources™®, 53
current-time, 43

dataset-get-objective-id, 58
datetime-field?, 57

define, 16

delete, 56

delete*, 56

difference, 41

dissoc, 43

dissoc-in, 43

div, 23

drop, 35

empty?, 30, 36

even?, 25

every?, 39

execution-inputs, 60
execution-logs, 60
execution-output-resources, 60
execution-outputs, 60
execution-sources, 60

exp, 25

false, 3

fetch, 55
field-categories, 57
field-distribution, 57
field-items, 57
field-terms, 57
field?, 57

filter, 39
find-field, 57
flatline, 31

flatten, 33

floor, 24

for, 11, 12

gamma, 26
get, 42
get-in, 42

handle, 13
head, 34

identity, 19

if, 7
image-field?, 57
insert, 35
integer?, 2, 23
intersection, 41
items-field?, 57
iterate, 38

join, 29
json-str, 28

keys, 41

lambda, 5

last, 34

let, 9

levenshtein, 30

list, 33

list*, 33

list-anomalies, 49
list-anomalyscores, 49
list-associationsets, 49
list-associations, 49
list-batchanomalyscores, 49
list-batchcentroids, 49
list-batchpredictions, 49
list-batchprojections, 49
list-batchtopicdistributions, 49
list-centroids, 49
list-clusters, 49
list-composites, 49
list-configurations, 49
list-correlations, 49
list-datasets, 49
list-deepnets, 49
list-ensembles, 49
list-evaluations, 49
list-executions, 49
list-forecasts, 49

list-fusions, 49
list-libraries, 49
list-linearregressions, 49
list-logisticregressions, 49
list-models, 49
list-optimls, 49
list-pcas, 49
list-predictions, 49
list-projections, 49
list-projects, 49
list-samples, 49
list-scripts, 49
list-sources, 49
list-statisticaltests, 49
list-timeseriess, 49
list-topicdistributions, 49
list-topicmodels, 49
list?, 2, 33

log, 25

log-debug, 44

log-error, 44

log-info, 44

log-level, 44
log-progress, 44
log-warn, 44

log10, 25

log2, 25
logged-progress, 44
loop, 11

lower-case, 30

make-map, 41
map, 11

map?, 2
match-fields-by-name, 58
matches, 32
matches?, 32
max, 25

max-key, 37

md5, 28

mean, 27
member?, 36
merge, 43
merge-datasets, 59
min, 25

min-key, 37

negative?, 25
not, 21

nth, 35

number?, 2, 23
numeric-field?, 57

odd?, 25
or, 9

parse-resource-id, 46
partial, 22
path-field?, 57

positive?, 25

pow, 25

ppr-str, 28

pr-str, 28
pretty-whizzml, 29
procedure?, 2
prog, 10

raise, 12

rand, 26

rand-int, 26
rand-range, 26
range, 34

re-quote, 32
read-number, 24
real?, 2, 23

recur, 11

reduce, 37

regexp?, 32

rem, 23

remove, 40
remove-duplicates, 36
repeat, 34
repeatedly, 34
replace, 32
replace-first, 32
replace-first-string, 33
replace-string, 33
resource-fields, 56
resource-id, 46
resource-id?, 46
resource-ids, 48
resource-name, 47
resource-property, 46
resource-type, 46
resource-types, 46
resource-workflow, 62
resources, 47

reverse, 37

round, 24
row-distance, 59
row-distance-squared, 59

scriptify, 63
select-keys, 41
set, 39

set*, 39
set-log-level, 44
set-rng-seed, 26
set?, 2, 39
shal, 28
sha256, 28

sin, 25

sinh, 26
smacdown-optimize, 61
some, 306

sort, 37
sort-by-key, 37
split, 29

sqrt, 23
stdev, 27
str, 27
string?, 2, 27
subs, 29
subset?, 40
superset?, 40

tail, 34

take, 35

tan, 25

tanh, 26
text-field?, 57
to-degress, 26
to-radians, 26
true, 3

try, 14

union, 41

update, 56
update-and-wait, 56
upper-case, 30

values, 41
variance, 27
version, 20
version-major, 20
version-micro, 20
version-minor, 20

wait, b3

wait®, 53

when, 7
with-time-log, 44

zero?, 25

List of Tables

2.1

4.1
4.1
4.2
4.3

Error codes e e e e e 14
Possible parent resources in calls to create L0 oo 50
Possible parent resources in calls to create L Lo oo o1
Workflow attributes 62
Step attributes L Lo 63

	Basic concepts
	Identifiers
	Whitespace and comments
	Variables vs syntax
	Types

	Expressions
	Variable references
	Literal expressions
	Numbers
	Strings and booleans
	Lists
	Sets
	Maps

	Procedure calls
	Procedures
	Maps and lists as procedures
	Conditionals
	Conditionals with if and when
	Conditionals with cond
	Logical and
	Logical or

	Binding constructs (let)
	Binding list destructuring with let

	Sequencing
	Iteration
	Iteration with loop/recur
	List value mapping with map
	List value mapping with for

	Error handling
	Signaling errors with raise
	Capturing errors with handle
	Capturing errors with try/catch
	System errors

	Program structure
	Programs
	Definitions
	Variable assignments
	Parallel variable assignments
	Procedure definitions

	Standard procedures
	Utilities
	Identity
	Versioning

	Equality
	Logical functions
	Procedures
	Numbers
	Numerical type predicates
	Arithmetic operators
	Numeric coercion and parsing
	Comparisons
	Transcedental functions
	Random number generators
	Basic statistics

	Strings
	Coercion to string
	Digests
	Pretty printing WhizzML code
	String manipulation
	String length and distance
	Flatline strings
	Regular expressions

	Lists
	Constructors
	Accessors
	Membership
	Length
	Extrema finding
	Sorting and reordering
	Folding with reduce and iterate
	Filtering
	Other list traversal procedures

	Sets
	Construction
	Membership
	Set operations

	Maps
	Construction
	Accessors
	Element insertion
	Element removal

	Time
	Logging
	BigML resources
	Resource types
	Resource identifiers
	Resource properties
	Error reporting
	Listing resources
	Creating resources
	Waiting for resource completion
	Creating and waiting for resource completion in one call
	Fetching resources
	Updating resources
	Deleting Resources
	Field procedures
	Dataset procedures
	Execution procedures

	SMACdown
	Resource workflow
	Scriptify

	Index
	Index of standard procedures
	List of Tables

