• 1 Introduction
  • 2 Understanding Anomalies ▶
    • 2.1 Isolation Forest
    • 2.2 Input Data for Anomalies
    • 2.3 Interpreting BigML Anomalies
    • 2.4 Anomalies with Images
  • 3 Creating Anomalies with 1-Click
  • 4 Anomaly Configuration Options ▶
    • 4.1 Number of Anomalies
    • 4.2 Forest Size
    • 4.3 Constraints
    • 4.4 ID fields
    • 4.5 Sampling Options
    • 4.6 Creating Anomolies with Configured Options
    • 4.7 API Request Preview
  • 5 Visualizing Anomalies ▶
    • 5.1 Anomaly Visualization with Images
    • 5.2 Create a Dataset from Anomalies
  • 6 Anomaly Predictions: Anomaly Scores ▼
    • 6.1 Introduction
    • 6.2 Creating Anomaly Scores
    • 6.3 Configuring Anomaly Scores
    • 6.4 Visualizing Anomaly Scores
    • 6.5 Consuming Anomaly Scores
    • 6.6 Descriptive Information
    • 6.7 Anomaly Scores Privacy
    • 6.8 Moving Scores
    • 6.9 Stopping Scores Creation
    • 6.10 Deleting Anomaly Scores
  • 7 Consuming Anomalies ▶
    • 7.1 Downloading Anomalies
    • 7.2 Using Anomalies via the BigML API
    • 7.3 Using Anomalies via the BigML Bindings
  • 8 Anomalies Limits
  • 9 Anomalies Descriptive Information ▶
    • 9.1 Anomalies Name
    • 9.2 Description
    • 9.3 Category
    • 9.4 Tags
    • 9.5 Counters
  • 10 Anomalies Privacy
  • 11 Moving Anomalies
  • 12 Stopping Anomalies Creation
  • 13 Deleting Anomalies
  • 14 Takeaways
  • Bibliography
  • Glossary

Anomaly Detection with the BigML Dashboard

6 Anomaly Predictions: Anomaly Scores

  • 6.1 Introduction
  • 6.2 Creating Anomaly Scores
  • 6.3 Configuring Anomaly Scores
  • 6.4 Visualizing Anomaly Scores
  • 6.5 Consuming Anomaly Scores
  • 6.6 Descriptive Information
  • 6.7 Anomaly Scores Privacy
  • 6.8 Moving Scores
  • 6.9 Stopping Scores Creation
  • 6.10 Deleting Anomaly Scores
Create a Dataset from Anomalies Introduction